{"id":"https://openalex.org/W4367860580","doi":"https://doi.org/10.48550/arxiv.2305.01476","title":"Deep Learning Based Multimodal with Two-phase Training Strategy for Daily Life Video Classification","display_name":"Deep Learning Based Multimodal with Two-phase Training Strategy for Daily Life Video Classification","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4367860580","doi":"https://doi.org/10.48550/arxiv.2305.01476"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.01476","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.01476","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075250567","display_name":"Lam Pham","orcid":"https://orcid.org/0000-0001-8155-7553"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pham, Lam","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070238515","display_name":"Trang T. Le","orcid":"https://orcid.org/0000-0003-3737-6565"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Le, Trang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030642705","display_name":"Cam Le","orcid":"https://orcid.org/0009-0002-8883-4677"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Le, Cam","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102968151","display_name":"Dat Ngo","orcid":"https://orcid.org/0000-0003-4374-5056"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ngo, Dat","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027002971","display_name":"Axel Wei\u00dfenfeld","orcid":"https://orcid.org/0000-0002-7246-2744"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Axel, Weissenfeld","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5102746568","display_name":"Alexander Schindler","orcid":"https://orcid.org/0000-0001-6058-7753"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Schindler, Alexander","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9634,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9575,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.73586154},{"id":"https://openalex.org/keywords/audio-visual","display_name":"Audio visual","score":0.70528394},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6231321},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.45001215}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7461435},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.73586154},{"id":"https://openalex.org/C3017588708","wikidata":"https://www.wikidata.org/wiki/Q758901","display_name":"Audio visual","level":2,"score":0.70528394},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67757446},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.65397763},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6231321},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.5751763},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.4829899},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4772056},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.45001215},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.38135457},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36153162},{"id":"https://openalex.org/C49774154","wikidata":"https://www.wikidata.org/wiki/Q131765","display_name":"Multimedia","level":1,"score":0.10557839},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.06930813},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.01476","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.01476","pdf_url":"http://arxiv.org/pdf/2305.01476","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.01476","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.01476","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4321353415","https://openalex.org/W3147472394","https://openalex.org/W3000197790","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2350550760","https://openalex.org/W2271369634","https://openalex.org/W2130974462","https://openalex.org/W2047100085","https://openalex.org/W2028665553"],"abstract_inverted_index":{"In":[0,26,82],"this":[1],"paper,":[2],"we":[3,20,33,65,89],"present":[4],"a":[5,22,91,100],"deep":[6,57,79],"learning":[7,58,80],"based":[8,59],"multimodal":[9],"system":[10],"for":[11],"classifying":[12],"daily":[13,110],"life":[14],"videos.":[15],"To":[16],"train":[17,47,90],"the":[18,27,35,42,48,52,62,77,83,96,105,119,141,184],"system,":[19],"propose":[21],"two-phase":[23],"training":[24,29,63,85],"strategy.":[25],"first":[28],"phase":[30,86],"(Phase":[31,87],"I),":[32],"extract":[34],"audio":[36,49,67,152,159],"and":[37,51,69,99,129,134,148,160,179],"visual":[38,53,70,156,161],"(image)":[39],"data":[40,50,54],"from":[41,76],"original":[43],"video.":[44],"We":[45],"then":[46],"with":[55,150,154,176],"independent":[56],"models.":[60,81],"After":[61],"processes,":[64],"obtain":[66],"embeddings":[68,71,98],"by":[72],"extracting":[73],"feature":[74],"maps":[75],"pre-trained":[78],"second":[84],"II),":[88],"fusion":[92],"layer":[93,102],"to":[94,103,183],"combine":[95],"audio/visual":[97],"dense":[101],"classify":[104],"combined":[106],"embedding":[107],"into":[108],"target":[109],"scenes.":[111],"Our":[112],"extensive":[113],"experiments,":[114],"which":[115],"were":[116],"conducted":[117],"on":[118,127],"benchmark":[120],"dataset":[121],"of":[122,131,145,168,173],"DCASE":[123,177],"(IEEE":[124],"AASP":[125],"Challenge":[126],"Detection":[128],"Classification":[130],"Acoustic":[132],"Scenes":[133],"Events)":[135],"2021":[136],"Task":[137],"1B":[138],"Development,":[139],"achieved":[140],"best":[142],"classification":[143,166],"accuracy":[144,167],"80.5%,":[146],"91.8%,":[147],"95.3%":[149,169],"only":[151,155],"data,":[153,157,162],"both":[158],"respectively.":[163],"The":[164],"highest":[165],"presents":[170],"an":[171],"improvement":[172],"17.9%":[174],"compared":[175],"baseline":[178],"shows":[180],"very":[181],"competitive":[182],"state-of-the-art":[185],"systems.":[186]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4367860580","counts_by_year":[],"updated_date":"2025-01-05T22:52:38.305567","created_date":"2023-05-04"}