{"id":"https://openalex.org/W4367845153","doi":"https://doi.org/10.48550/arxiv.2305.00324","title":"Representing Additive Gaussian Processes by Sparse Matrices","display_name":"Representing Additive Gaussian Processes by Sparse Matrices","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4367845153","doi":"https://doi.org/10.48550/arxiv.2305.00324"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.00324","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2305.00324","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100529867","display_name":"Lu Zou","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zou, Lu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101882098","display_name":"Haoyuan Chen","orcid":"https://orcid.org/0000-0001-9442-1874"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Haoyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100456723","display_name":"Liang Ding","orcid":"https://orcid.org/0000-0001-8976-2084"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ding, Liang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9807,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.6434468}],"concepts":[{"id":"https://openalex.org/C57830394","wikidata":"https://www.wikidata.org/wiki/Q278079","display_name":"Posterior probability","level":3,"score":0.6504247},{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.6434468},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.605733},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5355542},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.49647862},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.41218075},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.4120137},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.33817983},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.33329552},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.20657563},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.00324","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2305.00324","pdf_url":"http://arxiv.org/pdf/2305.00324","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.00324","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.00324","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W856257623","https://openalex.org/W4390421286","https://openalex.org/W4280563792","https://openalex.org/W2892315154","https://openalex.org/W2140186469","https://openalex.org/W2131935101","https://openalex.org/W2116723448","https://openalex.org/W2060045818","https://openalex.org/W2040227828","https://openalex.org/W2032094637"],"abstract_inverted_index":{"Among":[0],"generalized":[1],"additive":[2,4,22,137],"models,":[3],"Mat\\'ern":[5,78],"Gaussian":[6],"Processes":[7],"(GPs)":[8],"are":[9],"one":[10],"of":[11,36,93,132,163,183],"the":[12,33,38,50,60,82,87,124,164,174,180,185],"most":[13],"popular":[14],"for":[15,76,136,156,196,204],"scalable":[16],"high-dimensional":[17],"problems.":[18],"Thanks":[19],"to":[20,43,57,112,117,121,149,193,202],"their":[21],"structure":[23],"and":[24,63,91,106,130,152,161,167,188,200],"stochastic":[25],"differential":[26],"equation":[27],"representation,":[28],"back-fitting-based":[29,119],"algorithms":[30,56,120,148,155,177],"can":[31,97],"reduce":[32,179],"time":[34,46,181],"complexity":[35,182],"computing":[37,184],"posterior":[39,61,83,88,125,127,157],"mean":[40],"from":[41,191],"$O(n^3)$":[42],"$O(n\\log":[44],"n)$":[45,143,195],"where":[47],"$n$":[48],"is":[49],"data":[51],"size.":[52],"However,":[53],"generalizing":[54],"these":[55,94,114,133],"efficiently":[58,122],"compute":[59,123],"variance":[62],"maximum":[64],"log-likelihood":[65],"remains":[66],"an":[67],"open":[68],"problem.":[69],"In":[70],"this":[71],"study,":[72],"we":[73],"demonstrate":[74],"that":[75],"Additive":[77],"GPs,":[79,138],"not":[80],"only":[81,103],"mean,":[84,126],"but":[85],"also":[86],"variance,":[89,128],"log-likelihood,":[90,129],"gradient":[92,131,169,190],"three":[95,134],"functions":[96,135],"be":[98],"represented":[99],"by":[100],"formulas":[101,116],"involving":[102],"sparse":[104,107,115],"matrices":[105],"vectors.":[108],"We":[109,145],"show":[110],"how":[111],"use":[113],"generalize":[118],"all":[139],"in":[140,170],"$O(n":[141],"\\log":[142],"time.":[144],"apply":[146],"our":[147,176],"Bayesian":[150,171],"optimization":[151],"propose":[153],"efficient":[154],"updates,":[158],"hyperparameters":[159],"learning,":[160],"computations":[162],"acquisition":[165,186],"function":[166,187],"its":[168,189],"optimization.":[172],"Given":[173],"posterior,":[175],"significantly":[178],"$O(n^2)$":[192],"$O(\\log":[194],"general":[197],"learning":[198,206],"rate,":[199],"even":[201],"$O(1)$":[203],"small":[205],"rate.":[207]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4367845153","counts_by_year":[],"updated_date":"2025-04-08T23:07:34.587007","created_date":"2023-05-04"}