{"id":"https://openalex.org/W4366731613","doi":"https://doi.org/10.48550/arxiv.2304.09367","title":"Graph Neural Network-Based Anomaly Detection for River Network Systems","display_name":"Graph Neural Network-Based Anomaly Detection for River Network Systems","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4366731613","doi":"https://doi.org/10.48550/arxiv.2304.09367"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.09367","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2304.09367","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026264644","display_name":"Katie Buchhorn","orcid":"https://orcid.org/0000-0001-6079-1615"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Buchhorn, Katie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020119606","display_name":"Edgar Santos\u2010Fern\u00e1ndez","orcid":"https://orcid.org/0000-0001-5962-5417"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Santos-Fernandez, Edgar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001588690","display_name":"Kerrie Mengersen","orcid":"https://orcid.org/0000-0001-8625-9168"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mengersen, Kerrie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5063226953","display_name":"Robert Salomone","orcid":"https://orcid.org/0000-0002-6808-6918"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Salomone, Robert","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11490","display_name":"Hydrological Forecasting Using AI","score":0.994,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11490","display_name":"Hydrological Forecasting Using AI","score":0.994,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9872,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.8344151},{"id":"https://openalex.org/keywords/benchmarking","display_name":"Benchmarking","score":0.7633589},{"id":"https://openalex.org/keywords/strengths-and-weaknesses","display_name":"Strengths and weaknesses","score":0.4287785},{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.4207165}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.8344151},{"id":"https://openalex.org/C86251818","wikidata":"https://www.wikidata.org/wiki/Q816754","display_name":"Benchmarking","level":2,"score":0.7633589},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.7298623},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.724125},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.61046344},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.535403},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.43177557},{"id":"https://openalex.org/C63882131","wikidata":"https://www.wikidata.org/wiki/Q17122954","display_name":"Strengths and weaknesses","level":2,"score":0.4287785},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42460817},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.4207165},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3318108},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.18612224},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C162853370","wikidata":"https://www.wikidata.org/wiki/Q39809","display_name":"Marketing","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.09367","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2304.09367","pdf_url":"http://arxiv.org/pdf/2304.09367","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2304.09367","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.09367","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.78,"id":"https://metadata.un.org/sdg/6","display_name":"Clean water and sanitation"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390569940","https://openalex.org/W435179959","https://openalex.org/W4238897586","https://openalex.org/W2905433371","https://openalex.org/W2619091065","https://openalex.org/W2291782699","https://openalex.org/W2284465472","https://openalex.org/W2059640416","https://openalex.org/W2001981202","https://openalex.org/W1490753184"],"abstract_inverted_index":{"Water":[0],"is":[1,27,36,82],"the":[2,53,58,70,96,110,126,131,153,179],"lifeblood":[3],"of":[4,24,57,73,147,157],"river":[5,77,171],"networks,":[6],"and":[7,19,55,86,144,155],"its":[8],"quality":[9,26],"plays":[10],"a":[11,48,67,91],"crucial":[12,37],"role":[13],"in":[14,42,162,182],"sustaining":[15],"both":[16],"aquatic":[17],"ecosystems":[18],"human":[20],"societies.":[21],"Real-time":[22],"monitoring":[23],"water":[25],"increasingly":[28],"reliant":[29],"on":[30,125,168],"in-situ":[31],"sensor":[32,43,79],"technology.":[33],"Anomaly":[34],"detection":[35,75],"for":[38,76,84],"identifying":[39],"erroneous":[40],"patterns":[41],"data,":[44,59,80,184],"but":[45],"can":[46],"be":[47],"challenging":[49,71],"task":[50,72],"due":[51],"to":[52,69,108,164],"complexity":[54],"variability":[56],"even":[60],"under":[61],"normal":[62],"conditions.":[63],"This":[64],"paper":[65],"presents":[66],"solution":[68],"anomaly":[74,120],"network":[78,94,172],"which":[81,103],"essential":[83],"accurate":[85],"continuous":[87],"monitoring.":[88],"We":[89,116,150,190],"use":[90],"graph":[92,105],"neural":[93],"model,":[95],"recently":[97],"proposed":[98],"Graph":[99],"Deviation":[100],"Network":[101],"(GDN),":[102],"employs":[104],"attention-based":[106],"forecasting":[107],"capture":[109],"complex":[111,169],"spatio-temporal":[112],"relationships":[113],"between":[114],"sensors.":[115],"propose":[117],"an":[118],"alternate":[119],"scoring":[121],"method,":[122],"GDN+,":[123],"based":[124],"learned":[127],"graph.":[128],"To":[129],"evaluate":[130],"model's":[132],"efficacy,":[133],"we":[134],"introduce":[135,192],"new":[136],"benchmarking":[137,166],"simulation":[138],"experiments":[139],"with":[140],"highly-sophisticated":[141],"dependency":[142],"structures":[143],"subsequence":[145],"anomalies":[146],"various":[148],"types.":[149],"further":[151],"examine":[152],"strengths":[154],"weaknesses":[156],"this":[158],"baseline":[159,180],"approach,":[160],"GDN,":[161],"comparison":[163],"other":[165],"methods":[167],"real-world":[170],"data.":[173],"Findings":[174],"suggest":[175],"that":[176],"GDN+":[177],"outperforms":[178],"approach":[181],"high-dimensional":[183],"while":[185],"also":[186,191],"providing":[187],"improved":[188],"interpretability.":[189],"software":[193],"called":[194],"gnnad.":[195]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4366731613","counts_by_year":[],"updated_date":"2025-01-01T19:50:39.396866","created_date":"2023-04-24"}