{"id":"https://openalex.org/W4366458617","doi":"https://doi.org/10.48550/arxiv.2304.08763","title":"A Survey for Biomedical Text Summarization: From Pre-trained to Large Language Models","display_name":"A Survey for Biomedical Text Summarization: From Pre-trained to Large Language Models","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4366458617","doi":"https://doi.org/10.48550/arxiv.2304.08763"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.08763","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2304.08763","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101868563","display_name":"Qianqian Xie","orcid":"https://orcid.org/0000-0002-9588-7454"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Qianqian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070908607","display_name":"Zheheng Luo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luo, Zheheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057282504","display_name":"Benyou Wang","orcid":"https://orcid.org/0000-0002-1501-9914"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Benyou","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5077976343","display_name":"Sophia Ananiadou","orcid":"https://orcid.org/0000-0002-4097-9191"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ananiadou, Sophia","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.99995,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11710","display_name":"Biomedical Text Mining and Ontologies","score":0.9705,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9629,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C170858558","wikidata":"https://www.wikidata.org/wiki/Q1394144","display_name":"Automatic summarization","level":2,"score":0.9312341},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7258565},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.61047816},{"id":"https://openalex.org/C206345919","wikidata":"https://www.wikidata.org/wiki/Q20380951","display_name":"Resource (disambiguation)","level":2,"score":0.45215178},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38076347},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.33255488},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.08763","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2304.08763","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.08763","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.62,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389760904","https://openalex.org/W4323520239","https://openalex.org/W4306886878","https://openalex.org/W4242223894","https://openalex.org/W3148229873","https://openalex.org/W2366403280","https://openalex.org/W2150160875","https://openalex.org/W2091301346","https://openalex.org/W1517524280","https://openalex.org/W1495108544"],"abstract_inverted_index":{"The":[0],"exponential":[1],"growth":[2,96],"of":[3,71,93,127,157,167,189],"biomedical":[4,8,32,63],"texts":[5],"such":[6],"as":[7,39],"literature":[9],"and":[10,21,47,105,114,147,160,172,182,209,236],"electronic":[11],"health":[12],"records":[13],"(EHRs),":[14],"poses":[15],"a":[16,40,112,124,213,224],"significant":[17],"challenge":[18],"for":[19,111,117,239],"clinicians":[20],"researchers":[22],"to":[23,42,83,99,138,140,227,231],"access":[24],"clinical":[25,44],"information":[26,45,58],"efficiently.":[27],"To":[28,191],"tackle":[29],"this":[30,120,220],"challenge,":[31],"text":[33],"summarization":[34,102],"(BTS)":[35],"has":[36,88,97],"been":[37],"proposed":[38,101],"solution":[41],"support":[43],"retrieval":[46],"management.":[48],"BTS":[49,241],"aims":[50],"at":[51],"generating":[52],"concise":[53],"summaries":[54],"that":[55,219],"distill":[56],"key":[57],"from":[59,78,136],"single":[60],"or":[61],"multiple":[62],"documents.":[64],"In":[65,119],"recent":[66,128,170,204,234],"years,":[67],"the":[68,91,109,143,154,187,193,210,244],"rapid":[69],"advancement":[70],"fundamental":[72],"natural":[73],"language":[74,80,85],"processing":[75],"(NLP)":[76],"techniques,":[77],"pre-trained":[79],"models":[81,86],"(PLMs)":[82],"large":[84],"(LLMs),":[87],"greatly":[89],"facilitated":[90],"progress":[92],"BTS.":[94,118,176],"This":[95],"led":[98],"numerous":[100],"methods,":[103],"datasets,":[104,169,203],"evaluation":[106,173,207],"metrics,":[107,208],"raising":[108],"need":[110],"comprehensive":[113],"up-to-date":[115],"survey":[116,221],"paper,":[121],"we":[122,196],"present":[123],"systematic":[125],"review":[126,166],"advancements":[129,235],"in":[130,175,186,212],"BTS,":[131,158],"leveraging":[132],"cutting-edge":[133],"NLP":[134],"techniques":[135],"PLMs":[137,159],"LLMs,":[139,161],"help":[141],"understand":[142],"latest":[144],"progress,":[145],"challenges,":[146],"future":[148,184,240],"directions.":[149],"We":[150,177,217],"begin":[151],"by":[152,163],"introducing":[153],"foundational":[155],"concepts":[156],"followed":[162],"an":[164],"in-depth":[165],"available":[168,202],"approaches,":[171,205],"metrics":[174],"finally":[178],"discuss":[179],"existing":[180],"challenges":[181],"promising":[183],"directions":[185],"era":[188],"LLMs.":[190],"facilitate":[192],"research":[194,242,245],"community,":[195],"line":[197],"up":[198],"open":[199],"resources":[200],"including":[201],"codes,":[206],"leaderboard":[211],"public":[214],"project:":[215],"https://github.com/KenZLuo/Biomedical-Text-Summarization-Survey/tree/master.":[216],"believe":[218],"will":[222],"be":[223],"useful":[225],"resource":[226],"researchers,":[228],"allowing":[229],"them":[230],"quickly":[232],"track":[233],"provide":[237],"guidelines":[238],"within":[243],"community.":[246]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4366458617","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3}],"updated_date":"2025-01-06T03:17:34.639078","created_date":"2023-04-22"}