{"id":"https://openalex.org/W4363671938","doi":"https://doi.org/10.48550/arxiv.2304.03526","title":"Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative Radiance Field","display_name":"Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative Radiance Field","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4363671938","doi":"https://doi.org/10.48550/arxiv.2304.03526"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.03526","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2304.03526","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041971990","display_name":"Leheng Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Leheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027003305","display_name":"Qing Lian","orcid":"https://orcid.org/0000-0002-9552-7555"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lian, Qing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029030097","display_name":"Luozhou Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Luozhou","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100834570","display_name":"Ningning Ma","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ma, Ningning","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101938761","display_name":"Yingcong Chen","orcid":"https://orcid.org/0000-0002-9565-8205"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Ying-Cong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.4900638},{"id":"https://openalex.org/keywords/3d-model","display_name":"3d model","score":0.48292586},{"id":"https://openalex.org/keywords/3d-modeling","display_name":"3D modeling","score":0.41792023}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80084825},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.65364134},{"id":"https://openalex.org/C23690007","wikidata":"https://www.wikidata.org/wiki/Q1411145","display_name":"Radiance","level":2,"score":0.6405853},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.5103938},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.4977913},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.4900638},{"id":"https://openalex.org/C3019007443","wikidata":"https://www.wikidata.org/wiki/Q568742","display_name":"3d model","level":2,"score":0.48292586},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.4813593},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.42212564},{"id":"https://openalex.org/C2777897806","wikidata":"https://www.wikidata.org/wiki/Q568742","display_name":"3D modeling","level":2,"score":0.41792023},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41007784},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.38457513},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.07821074},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.03526","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2304.03526","pdf_url":"http://arxiv.org/pdf/2304.03526","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2304.03526","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.03526","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4387506531","https://openalex.org/W4380551139","https://openalex.org/W4365211920","https://openalex.org/W4317695495","https://openalex.org/W4238433571","https://openalex.org/W3174044702","https://openalex.org/W3014948380","https://openalex.org/W2967848559","https://openalex.org/W2708417971","https://openalex.org/W2280377497"],"abstract_inverted_index":{"This":[0],"work":[1],"explores":[2],"the":[3,21,26,34,38,53,60,70,89,107,155,176],"use":[4],"of":[5,20,72,142,157,178],"3D":[6,14,40,56,74,104,134,140,148,179],"generative":[7,22],"models":[8,23],"to":[9,32,64,87,98,117,133],"synthesize":[10],"training":[11],"data":[12,28,90,170],"for":[13,150],"vision":[15],"tasks.":[16,152],"The":[17],"key":[18],"requirements":[19,62],"are":[24],"that":[25,52,106,168],"generated":[27,143],"should":[29,42],"be":[30,43],"photorealistic":[31,125],"match":[33],"real-world":[35],"scenarios,":[36],"and":[37,69,124],"corresponding":[39],"attributes":[41],"aligned":[44],"with":[45,121],"given":[46],"sampling":[47],"labels.":[48],"However,":[49],"we":[50,79],"find":[51],"recent":[54],"NeRF-based":[55],"GANs":[57,105],"hardly":[58],"meet":[59],"above":[61],"due":[63],"their":[65],"designed":[66],"generation":[67,85,91,171],"pipeline":[68],"lack":[71],"explicit":[73,139],"supervision.":[75],"In":[76],"this":[77],"work,":[78],"propose":[80],"Lift3D,":[81],"an":[82],"inverted":[83],"2D-to-3D":[84],"framework":[86,159,172],"achieve":[88],"objectives.":[92],"Lift3D":[93,114,137],"has":[94],"several":[95],"merits":[96],"compared":[97],"prior":[99],"methods:":[100],"(1)":[101],"Unlike":[102],"previous":[103],"output":[108],"resolution":[109,123],"is":[110],"fixed":[111],"after":[112],"training,":[113],"can":[115,173],"generalize":[116],"any":[118],"camera":[119],"intrinsic":[120],"higher":[122],"output.":[126],"(2)":[127],"By":[128],"lifting":[129],"well-disentangled":[130],"2D":[131],"GAN":[132],"object":[135,180],"NeRF,":[136],"provides":[138],"information":[141],"objects,":[144],"thus":[145],"offering":[146],"accurate":[147],"annotations":[149],"downstream":[151],"We":[153],"evaluate":[154],"effectiveness":[156],"our":[158,169],"by":[160],"augmenting":[161],"autonomous":[162],"driving":[163],"datasets.":[164],"Experimental":[165],"results":[166],"demonstrate":[167],"effectively":[174],"improve":[175],"performance":[177],"detectors.":[181],"Project":[182],"page:":[183],"https://len-li.github.io/lift3d-web.":[184]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4363671938","counts_by_year":[],"updated_date":"2025-04-11T11:28:24.174976","created_date":"2023-04-11"}