{"id":"https://openalex.org/W4363671763","doi":"https://doi.org/10.48550/arxiv.2304.03408","title":"Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks","display_name":"Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4363671763","doi":"https://doi.org/10.48550/arxiv.2304.03408"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.03408","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2304.03408","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039282308","display_name":"Blake Bordelon","orcid":"https://orcid.org/0000-0003-0455-9445"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bordelon, Blake","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5023195984","display_name":"Cengiz Pehlevan","orcid":"https://orcid.org/0000-0001-9767-6063"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pehlevan, Cengiz","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.99995,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":90},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9886,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9886,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9792,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9791,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/initialization","display_name":"Initialization","score":0.7904322},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6632158},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.59085345}],"concepts":[{"id":"https://openalex.org/C114466953","wikidata":"https://www.wikidata.org/wiki/Q6034165","display_name":"Initialization","level":2,"score":0.7904322},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6632158},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.59085345},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.58292353},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.5083565},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.47526377},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.4499942},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4332095},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43122628},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.4292754},{"id":"https://openalex.org/C121864883","wikidata":"https://www.wikidata.org/wiki/Q677916","display_name":"Statistical physics","level":1,"score":0.3693511},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.30676955},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.29563248},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.19980535},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.09965739},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.03408","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2304.03408","pdf_url":"http://arxiv.org/pdf/2304.03408","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2304.03408","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.03408","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4292523377","https://openalex.org/W3204184292","https://openalex.org/W3189572500","https://openalex.org/W3176564347","https://openalex.org/W3095877357","https://openalex.org/W3031039437","https://openalex.org/W2355833770","https://openalex.org/W2072565696","https://openalex.org/W1985458517","https://openalex.org/W183202219"],"abstract_inverted_index":{"We":[0,142],"analyze":[1],"the":[2,39,43,51,66,72,87,96,101,104,131,134,180,184,230],"dynamics":[3,210,236],"of":[4,24,38,42,50,68,75,103,133,183,200,234],"finite":[5,11,156,239],"width":[6,26,209],"effects":[7,202],"in":[8,58,65,84,95,153],"wide":[9,154],"but":[10,82,155,174],"feature":[12,69,98,126,171,175,185],"learning":[13,99,127,152,172,176,194],"neural":[14,28],"networks.":[15,157],"Starting":[16],"from":[17],"a":[18,36,91,112],"dynamical":[19],"mean":[20],"field":[21],"theory":[22],"description":[23],"infinite":[25,208],"deep":[27],"network":[29,52,76,140,235],"kernel":[30,137,161],"and":[31,86,106,138,211,232],"prediction":[32,88],"dynamics,":[33],"we":[34,123,190,223],"provide":[35],"characterization":[37],"$O(1/\\sqrt{\\text{width}})$":[40],"fluctuations":[41,102],"DMFT":[44],"order":[45],"parameters":[46],"over":[47],"random":[48,81],"initializations":[49],"weights.":[53],"Our":[54],"results,":[55],"while":[56],"perturbative":[57],"width,":[59],"unlike":[60],"prior":[61],"analyses,":[62],"are":[63,80,108],"non-perturbative":[64],"strength":[67],"learning.":[70],"In":[71,119,158,187],"lazy":[73],"limit":[74],"training,":[77],"all":[78],"kernels":[79,105],"static":[83],"time":[85],"variance":[89,113,132,147,162,214,233],"has":[90],"universal":[92],"form.":[93],"However,":[94],"rich,":[97],"regime,":[100],"predictions":[107],"dynamically":[109,129],"coupled":[110],"with":[111],"that":[114,192,212],"can":[115,128,148,163,203,215],"be":[116,204],"computed":[117],"self-consistently.":[118],"two":[120],"layer":[121],"networks,":[122,160],"show":[124,144],"how":[125,145],"reduce":[130],"final":[135,139],"tangent":[136],"predictions.":[141],"also":[143],"initialization":[146,213],"slow":[149],"down":[150],"online":[151],"deeper":[159],"dramatically":[164],"accumulate":[165],"through":[166],"subsequent":[167],"layers":[168],"at":[169],"large":[170,193],"strengths,":[173],"continues":[177],"to":[178,228,238],"improve":[179],"signal-to-noise":[181],"ratio":[182],"kernels.":[186],"discrete":[188],"time,":[189],"demonstrate":[191],"rate":[195],"phenomena":[196],"such":[197],"as":[198],"edge":[199],"stability":[201],"well":[205],"captured":[206],"by":[207],"decrease":[216],"dynamically.":[217],"For":[218],"CNNs":[219],"trained":[220],"on":[221],"CIFAR-10,":[222],"empirically":[224],"find":[225],"significant":[226],"corrections":[227],"both":[229],"bias":[231],"due":[237],"width.":[240]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4363671763","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2}],"updated_date":"2024-12-22T20:15:15.480708","created_date":"2023-04-11"}