{"id":"https://openalex.org/W4361807037","doi":"https://doi.org/10.48550/arxiv.2303.16668","title":"A Byzantine-Resilient Aggregation Scheme for Federated Learning via Matrix Autoregression on Client Updates","display_name":"A Byzantine-Resilient Aggregation Scheme for Federated Learning via Matrix Autoregression on Client Updates","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4361807037","doi":"https://doi.org/10.48550/arxiv.2303.16668"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.16668","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.16668","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5011299100","display_name":"Gabriele Tolomei","orcid":"https://orcid.org/0000-0001-7471-6659"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tolomei, Gabriele","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018990010","display_name":"Edoardo Gabrielli","orcid":"https://orcid.org/0000-0002-9573-3615"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gabrielli, Edoardo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086319467","display_name":"Dimitri Belli","orcid":"https://orcid.org/0000-0003-1491-6450"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Belli, Dimitri","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5063992492","display_name":"Vittorio Miori","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Miori, Vittorio","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.778623,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9651,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9651,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9145,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.7022796},{"id":"https://openalex.org/keywords/federated-learning","display_name":"Federated Learning","score":0.5214476}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73419785},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.7022796},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.66212213},{"id":"https://openalex.org/C159877910","wikidata":"https://www.wikidata.org/wiki/Q2202883","display_name":"Autoregressive model","level":2,"score":0.6245968},{"id":"https://openalex.org/C104562893","wikidata":"https://www.wikidata.org/wiki/Q47591","display_name":"Byzantine architecture","level":2,"score":0.58042824},{"id":"https://openalex.org/C2992525071","wikidata":"https://www.wikidata.org/wiki/Q50818671","display_name":"Federated learning","level":2,"score":0.5214476},{"id":"https://openalex.org/C77618280","wikidata":"https://www.wikidata.org/wiki/Q1155772","display_name":"Scheme (mathematics)","level":2,"score":0.4891899},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.48027468},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.47692177},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3585814},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3575248},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3511659},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.2960229},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.103051126},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.09722394},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.16668","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2303.16668","pdf_url":"http://arxiv.org/pdf/2303.16668","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.16668","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.16668","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W635625959","https://openalex.org/W4386477301","https://openalex.org/W4252331942","https://openalex.org/W4242769984","https://openalex.org/W3005992387","https://openalex.org/W2937099569","https://openalex.org/W2349019353","https://openalex.org/W2154965898","https://openalex.org/W2034320198","https://openalex.org/W1548189724"],"abstract_inverted_index":{"In":[0],"this":[1,43],"work,":[2],"we":[3],"propose":[4],"FLANDERS,":[5],"a":[6,31,54],"novel":[7],"federated":[8],"learning":[9],"(FL)":[10],"aggregation":[11],"scheme":[12],"robust":[13],"to":[14,95],"Byzantine":[15,80],"attacks.":[16],"FLANDERS":[17,70,83],"considers":[18],"the":[19,72,75],"local":[20],"model":[21],"updates":[22],"sent":[23],"by":[24,46,53],"clients":[25,39],"at":[26],"each":[27],"FL":[28,66],"round":[29],"as":[30,40,93],"matrix-valued":[32],"time":[33,44],"series.":[34],"Then,":[35],"it":[36],"identifies":[37],"malicious":[38],"outliers":[41],"of":[42,74],"series":[45],"comparing":[47],"actual":[48],"observations":[49],"with":[50],"those":[51],"estimated":[52],"matrix":[55],"autoregressive":[56],"forecasting":[57],"model.":[58],"Experiments":[59],"conducted":[60],"on":[61],"several":[62],"datasets":[63],"under":[64,88],"different":[65],"settings":[67],"demonstrate":[68],"that":[69],"matches":[71],"robustness":[73],"most":[76],"powerful":[77],"baselines":[78],"against":[79],"clients.":[81],"Furthermore,":[82],"remains":[84],"highly":[85],"effective":[86],"even":[87],"extremely":[89],"severe":[90],"attack":[91],"scenarios,":[92],"opposed":[94],"existing":[96],"defense":[97],"strategies.":[98]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4361807037","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-03T09:48:24.564348","created_date":"2023-04-05"}