{"id":"https://openalex.org/W4361806252","doi":"https://doi.org/10.48550/arxiv.2303.16293","title":"SnakeVoxFormer: Transformer-based Single Image\\\\Voxel Reconstruction with Run Length Encoding","display_name":"SnakeVoxFormer: Transformer-based Single Image\\\\Voxel Reconstruction with Run Length Encoding","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4361806252","doi":"https://doi.org/10.48550/arxiv.2303.16293"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.16293","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.16293","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5033823554","display_name":"Jae Joong Lee","orcid":"https://orcid.org/0000-0002-0445-3141"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Jae Joong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5061742294","display_name":"Bed\u0159ich Bene\u0161","orcid":"https://orcid.org/0000-0002-5293-2112"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Benes, Bedrich","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/3d-reconstruction","display_name":"3D Reconstruction","score":0.42643195}],"concepts":[{"id":"https://openalex.org/C54170458","wikidata":"https://www.wikidata.org/wiki/Q663554","display_name":"Voxel","level":2,"score":0.854681},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7030615},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.70169747},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.54227275},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.50894713},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.49718788},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.47815618},{"id":"https://openalex.org/C81081738","wikidata":"https://www.wikidata.org/wiki/Q55542","display_name":"Lossless compression","level":3,"score":0.47814023},{"id":"https://openalex.org/C109950114","wikidata":"https://www.wikidata.org/wiki/Q4464732","display_name":"3D reconstruction","level":2,"score":0.42643195},{"id":"https://openalex.org/C78548338","wikidata":"https://www.wikidata.org/wiki/Q2493","display_name":"Data compression","level":2,"score":0.2580248},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.16293","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.16293","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.16293","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.43}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4206138983","https://openalex.org/W3167885074","https://openalex.org/W3106969033","https://openalex.org/W3027020613","https://openalex.org/W2948148442","https://openalex.org/W2377158164","https://openalex.org/W2357988910","https://openalex.org/W2187600494","https://openalex.org/W2186939576","https://openalex.org/W2016533837"],"abstract_inverted_index":{"Deep":[0],"learning-based":[1],"3D":[2,30,56,119,161],"object":[3,31],"reconstruction":[4,32,163],"has":[5],"achieved":[6],"unprecedented":[7],"results.":[8],"Among":[9],"those,":[10],"the":[11,41,52,68,76,101,111,135,147,158,170],"transformer":[12,92],"deep":[13],"neural":[14],"model":[15],"showed":[16],"outstanding":[17],"performance":[18],"in":[19,33,66],"many":[20],"applications":[21],"of":[22,62,134,149],"computer":[23],"vision.":[24],"We":[25,94,139,153],"introduce":[26],"SnakeVoxFormer,":[27],"a":[28,37,48,55,74,85,117],"novel,":[29],"voxel":[34,57,77,143,162],"space":[35,78],"from":[36,164],"single":[38],"image":[39],"using":[40,67],"transformer.":[42,112],"The":[43,59,113],"input":[44],"to":[45,99,126,179],"SnakeVoxFormer":[46],"is":[47,54,65,89,116],"2D":[49],"image,":[50],"and":[51,79,151,166,177],"result":[53],"model.":[58],"key":[60],"novelty":[61],"our":[63,155,167],"approach":[64],"run-length":[69],"encoding":[70,98,150],"that":[71,88,107,124,129],"traverses":[72],"(like":[73],"snake)":[75],"encodes":[80],"wide":[81],"spatial":[82],"differences":[83],"into":[84,105],"1D":[86,114,127],"structure":[87],"suitable":[90],"for":[91,110,160],"encoding.":[93],"then":[95],"use":[96,130],"dictionary":[97],"convert":[100],"discovered":[102],"RLE":[103],"blocks":[104],"tokens":[106],"are":[108],"used":[109],"representation":[115],"lossless":[118],"shape":[120],"data":[121,128,137],"compression":[122],"method":[123,156,168],"converts":[125],"only":[131],"about":[132],"1%":[133],"original":[136],"size.":[138],"show":[140],"how":[141],"different":[142],"traversing":[144],"strategies":[145],"affect":[146],"effect":[148],"reconstruction.":[152],"compare":[154],"with":[157],"state-of-the-art":[159,171],"images":[165],"improves":[169],"methods":[172],"by":[173],"at":[174],"least":[175],"2.8%":[176],"up":[178],"19.8%.":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4361806252","counts_by_year":[],"updated_date":"2024-12-09T22:17:39.800082","created_date":"2023-04-05"}