{"id":"https://openalex.org/W4361231245","doi":"https://doi.org/10.48550/arxiv.2303.15954","title":"TraffNet: Learning Causality of Traffic Generation for What-if Prediction","display_name":"TraffNet: Learning Causality of Traffic Generation for What-if Prediction","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4361231245","doi":"https://doi.org/10.48550/arxiv.2303.15954"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.15954","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.15954","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100413863","display_name":"Ming Xu","orcid":"https://orcid.org/0000-0002-7106-8390"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Ming","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070295334","display_name":"Yunyi Ma","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ma, Yunyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031660096","display_name":"Ruimin Li","orcid":"https://orcid.org/0000-0002-3405-1143"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Ruimin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023693291","display_name":"Geqi Qi","orcid":"https://orcid.org/0000-0002-0767-1865"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qi, Geqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101630444","display_name":"Xiangfu Meng","orcid":"https://orcid.org/0000-0001-7879-2368"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Meng, Xiangfu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5033070120","display_name":"Haibo Jin","orcid":"https://orcid.org/0000-0002-0143-8130"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jin, Haibo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":68,"max":79},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.9903,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12095","display_name":"Vehicle emissions and performance","score":0.9693,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.5509304},{"id":"https://openalex.org/keywords/traffic-flow","display_name":"Traffic Flow","score":0.519816},{"id":"https://openalex.org/keywords/reinforcement-learning","display_name":"Reinforcement Learning","score":0.508322},{"id":"https://openalex.org/keywords/causality","display_name":"Causality (physics)","score":0.42840084}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7937023},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.5509304},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5445594},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5369048},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53479356},{"id":"https://openalex.org/C176715033","wikidata":"https://www.wikidata.org/wiki/Q2080768","display_name":"Traffic generation model","level":2,"score":0.47784898},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.47587386},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.47179002},{"id":"https://openalex.org/C64357122","wikidata":"https://www.wikidata.org/wiki/Q1149766","display_name":"Causality (physics)","level":2,"score":0.42840084},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3986172},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.1270889},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.12641168},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.15954","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.15954","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.15954","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.53}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W830525666","https://openalex.org/W4375867731","https://openalex.org/W4312071518","https://openalex.org/W3014724311","https://openalex.org/W2901208600","https://openalex.org/W2389053294","https://openalex.org/W2330229995","https://openalex.org/W2081494945","https://openalex.org/W1970893504","https://openalex.org/W1677090476"],"abstract_inverted_index":{"Real-time":[0],"what-if":[1,30,57,127],"traffic":[2,11,24,31,54,82,123,128],"prediction":[3,32,58],"is":[4,149],"crucial":[5],"for":[6,56,96],"decision":[7],"making":[8],"in":[9,23,29],"intelligent":[10],"management":[12],"and":[13,89,145],"control.":[14],"Although":[15],"current":[16],"deep":[17,44],"learning":[18,45,97],"methods":[19],"demonstrate":[20],"significant":[21],"advantages":[22],"prediction,":[25],"they":[26],"are":[27],"powerless":[28],"due":[33],"to":[34,69,77,137],"their":[35],"nature":[36],"of":[37,53,81,105,122,141,147],"correlation-based.":[38],"Here,":[39],"we":[40,64,92,131],"present":[41],"a":[42,66,94],"simple":[43],"framework":[46],"called":[47],"TraffNet":[48,148],"that":[49],"learns":[50],"the":[51,71,75,103,110,119,139],"mechanisms":[52],"generation":[55],"from":[59],"vehicle":[60],"trajectory":[61],"data.":[62],"First,":[63],"use":[65],"heterogeneous":[67],"graph":[68],"represent":[70],"road":[72,111],"network,":[73],"allowing":[74],"model":[76],"incorporate":[78],"causal":[79],"features":[80],"flows,":[83],"such":[84],"as":[85],"Origin-Destination":[86],"(OD)":[87],"demands":[88,108],"routes.":[90],"Next,":[91],"propose":[93],"method":[95],"segment":[98,115],"representations,":[99],"which":[100],"involves":[101],"modeling":[102],"process":[104],"assigning":[106],"OD":[107],"onto":[109],"network.":[112],"The":[113,143],"learned":[114],"representations":[116],"effectively":[117],"encapsulate":[118],"intricate":[120],"causes":[121],"generation,":[124],"facilitating":[125],"downstream":[126],"prediction.":[129],"Finally,":[130],"conduct":[132],"experiments":[133],"on":[134],"synthetic":[135],"datasets":[136,146],"evaluate":[138],"effectiveness":[140],"TraffNet.":[142],"code":[144],"available":[150],"at":[151],"https://github.com/mayunyi-1999/TraffNet_code.git.":[152]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4361231245","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-05T07:53:36.262613","created_date":"2023-03-31"}