{"id":"https://openalex.org/W4360889975","doi":"https://doi.org/10.48550/arxiv.2303.13177","title":"It is all Connected: A New Graph Formulation for Spatio-Temporal Forecasting","display_name":"It is all Connected: A New Graph Formulation for Spatio-Temporal Forecasting","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4360889975","doi":"https://doi.org/10.48550/arxiv.2303.13177"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.13177","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.13177","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088173483","display_name":"Lars \u00d8degaard Bentsen","orcid":"https://orcid.org/0000-0003-2606-2907"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bentsen, Lars \u00d8degaard","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015174757","display_name":"Narada Dilp Warakagoda","orcid":"https://orcid.org/0000-0002-9954-0431"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Warakagoda, Narada Dilp","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062372321","display_name":"Roy Stenbro","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stenbro, Roy","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5090446312","display_name":"Paal Engelstad","orcid":"https://orcid.org/0009-0000-8371-927X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Engelstad, Paal","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.710701,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9476,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9476,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9362,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9203,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/temporal-database","display_name":"Temporal database","score":0.71094394}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7272088},{"id":"https://openalex.org/C77277458","wikidata":"https://www.wikidata.org/wiki/Q1969246","display_name":"Temporal database","level":2,"score":0.71094394},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5935738},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.53124547},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.47991475},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.46885046},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45128164},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.4354612},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3435168},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.2046623},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.13177","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.13177","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.13177","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.82,"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4380150146","https://openalex.org/W4289597203","https://openalex.org/W4285201053","https://openalex.org/W4283773154","https://openalex.org/W3139174110","https://openalex.org/W3024870410","https://openalex.org/W2753779043","https://openalex.org/W2410652950","https://openalex.org/W2085630472","https://openalex.org/W1977098485"],"abstract_inverted_index":{"With":[0],"an":[1],"ever-increasing":[2],"number":[3],"of":[4],"sensors":[5],"in":[6,77,98],"modern":[7],"society,":[8],"spatio-temporal":[9,27,178],"time":[10,144],"series":[11],"forecasting":[12,28,167],"has":[13],"become":[14],"a":[15,60,78,85,89,99,169],"de":[16],"facto":[17],"tool":[18],"to":[19,49],"make":[20],"informed":[21],"decisions":[22],"about":[23],"the":[24,119,126,134,153,160],"future.":[25],"Most":[26],"models":[29,179],"typically":[30],"comprise":[31],"distinct":[32],"components":[33],"that":[34,138],"learn":[35,109],"spatial":[36,53,94,113],"and":[37,93,112],"temporal":[38,66,92,111,123,135,189],"dependencies.":[39],"A":[40],"common":[41],"methodology":[42],"employs":[43],"some":[44],"Graph":[45],"Neural":[46],"Network":[47],"(GNN)":[48],"capture":[50],"relations":[51],"between":[52],"locations,":[54],"while":[55,116],"another":[56],"network,":[57],"such":[58],"as":[59,73,88,168,188],"recurrent":[61],"neural":[62],"network":[63],"(RNN),":[64],"learns":[65],"correlations.":[67],"By":[68],"representing":[69],"every":[70],"recorded":[71],"sample":[72],"its":[74],"own":[75],"node":[76],"graph,":[79],"rather":[80],"than":[81],"all":[82],"measurements":[83,132],"for":[84,121,155],"particular":[86],"location":[87],"single":[90],"node,":[91],"information":[95],"is":[96],"encoded":[97],"similar":[100],"manner.":[101],"In":[102],"this":[103],"setting,":[104],"GNNs":[105,181],"can":[106],"now":[107],"directly":[108],"both":[110],"dependencies,":[114],"jointly,":[115],"also":[117,140],"alleviating":[118],"need":[120,154],"additional":[122],"networks.":[124],"Furthermore,":[125],"framework":[127,175],"does":[128],"not":[129],"require":[130],"aligned":[131],"along":[133],"dimension,":[136],"meaning":[137],"it":[139],"naturally":[141],"facilitates":[142],"irregular":[143],"series,":[145],"different":[146],"sampling":[147],"frequencies":[148],"or":[149,185],"missing":[150],"data,":[151],"without":[152],"data":[156],"imputation.":[157],"To":[158],"evaluate":[159],"proposed":[161,174],"methodology,":[162],"we":[163],"consider":[164],"wind":[165],"speed":[166],"case":[170],"study,":[171],"where":[172],"our":[173],"outperformed":[176],"other":[177],"using":[180],"with":[182],"either":[183],"Transformer":[184],"LSTM":[186],"networks":[187],"update":[190],"functions.":[191]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4360889975","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-16T05:29:42.634751","created_date":"2023-03-25"}