{"id":"https://openalex.org/W4330338981","doi":"https://doi.org/10.48550/arxiv.2303.10619","title":"Sequential Persuasion Using Limited Experiments","display_name":"Sequential Persuasion Using Limited Experiments","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4330338981","doi":"https://doi.org/10.48550/arxiv.2303.10619"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.10619","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.10619","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022609754","display_name":"Bonan Ni","orcid":"https://orcid.org/0000-0002-0143-4770"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ni, Bonan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102506436","display_name":"Weiran Shen","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shen, Weiran","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5013558969","display_name":"Pingzhong Tang","orcid":"https://orcid.org/0000-0003-1330-1999"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tang, Pingzhong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9792,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9792,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11704","display_name":"Mobile Crowdsensing and Crowdsourcing","score":0.9533,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11182","display_name":"Auction Theory and Applications","score":0.9285,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/communication-source","display_name":"Communication source","score":0.81260276},{"id":"https://openalex.org/keywords/infimum-and-supremum","display_name":"Infimum and supremum","score":0.60232246},{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.42843074}],"concepts":[{"id":"https://openalex.org/C198104137","wikidata":"https://www.wikidata.org/wiki/Q974688","display_name":"Communication source","level":2,"score":0.81260276},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.60462576},{"id":"https://openalex.org/C95611797","wikidata":"https://www.wikidata.org/wiki/Q17502105","display_name":"Infimum and supremum","level":2,"score":0.60232246},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.5248544},{"id":"https://openalex.org/C2781310500","wikidata":"https://www.wikidata.org/wiki/Q1231428","display_name":"Persuasion","level":2,"score":0.52122295},{"id":"https://openalex.org/C205706631","wikidata":"https://www.wikidata.org/wiki/Q2319304","display_name":"Expected utility hypothesis","level":2,"score":0.49144828},{"id":"https://openalex.org/C144237770","wikidata":"https://www.wikidata.org/wiki/Q747534","display_name":"Mathematical economics","level":1,"score":0.4640246},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.42843074},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.38518834},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24133292},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.1884071},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.09990218},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.10619","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.10619","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.10619","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W649012515","https://openalex.org/W3169835994","https://openalex.org/W2491046942","https://openalex.org/W2161303371","https://openalex.org/W1974065322","https://openalex.org/W1662240627","https://openalex.org/W1546646725","https://openalex.org/W1536610849","https://openalex.org/W1480504010","https://openalex.org/W1193337282"],"abstract_inverted_index":{"Bayesian":[0,147,175],"persuasion":[1,148,176],"and":[2,19,33,116,187],"its":[3,31],"derived":[4],"information":[5,50],"design":[6,196,210,216,222],"problem":[7],"has":[8,87],"been":[9,88],"one":[10,35],"of":[11,68,74,81,119,124,130,172,229],"the":[12,17,23,40,43,56,72,79,102,109,128,131,140,145,160,168,173,192,206,227,230,236],"main":[13],"research":[14],"agendas":[15],"in":[16,53,98,144,197],"economics":[18],"computation":[20],"literature":[21],"over":[22],"past":[24],"decade.":[25],"However,":[26],"when":[27,212],"attempting":[28],"to":[29,166],"apply":[30],"model":[32],"theory,":[34],"is":[36,181,224],"often":[37,95],"limited":[38],"by":[39,64],"fact":[41],"that":[42,91,138,223],"sender":[44,57,103,161],"can":[45,58,162],"only":[46,233],"implement":[47],"very":[48],"restricted":[49],"structures.":[51],"Moreover,":[52],"this":[54,151,198],"case,":[55],"possibly":[59],"achieve":[60,167],"higher":[61],"expected":[62,111,133,170],"utility":[63,112,134,171,184],"performing":[65],"a":[66,136,156,182],"sequence":[67],"feasible":[69,164],"experiments,":[70,125],"where":[71,159],"choice":[73,228],"each":[75],"experiment":[76,232],"depends":[77,234],"on":[78,235],"outcomes":[80],"all":[82],"previous":[83],"experiments.":[84,120],"Indeed,":[85],"it":[86],"well":[89],"observed":[90],"real":[92],"life":[93],"persuasions":[94],"take":[96],"place":[97],"rounds":[99],"during":[100],"which":[101,180,205],"exhibits":[104],"experiments/arguments":[105],"sequentially.":[106],"We":[107],"study":[108,155],"sender's":[110,132,193,207],"maximization":[113],"using":[114,135],"finite":[115],"infinite":[117,122],"sequences":[118,123],"For":[121],"we":[126,153,201],"characterize":[127],"supremum":[129],"function":[137],"generalizes":[139],"concave":[141],"closure":[142],"definition":[143],"standard":[146,174],"problem.":[149],"With":[150],"characterization,":[152],"first":[154],"special":[157],"case":[158],"use":[163],"experiments":[165],"optimal":[169,194,208,214,221],"without":[177],"feasibility":[178],"constraints,":[179],"trivial":[183],"upper":[185],"bound,":[186],"establish":[188],"structural":[189],"findings":[190],"about":[191],"sequential":[195,209,215],"case.":[199],"Then":[200],"derive":[202],"conditions":[203],"under":[204],"exists;":[211],"an":[213,220],"exists,":[217],"there":[218],"exists":[219],"Markovian,":[225],"i.e.,":[226],"next":[231],"receiver's":[237],"current":[238],"belief.":[239]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4330338981","counts_by_year":[],"updated_date":"2025-01-06T19:55:43.354612","created_date":"2023-03-22"}