{"id":"https://openalex.org/W4327990664","doi":"https://doi.org/10.48550/arxiv.2303.09746","title":"Detecting Out-of-distribution Examples via Class-conditional Impressions Reappearing","display_name":"Detecting Out-of-distribution Examples via Class-conditional Impressions Reappearing","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4327990664","doi":"https://doi.org/10.48550/arxiv.2303.09746"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.09746","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.09746","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5032827367","display_name":"Jinggang Chen","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Jinggang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100940847","display_name":"Xiaoyang Qu","orcid":"https://orcid.org/0009-0009-6311-4332"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qu, Xiaoyang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100367683","display_name":"Junjie Li","orcid":"https://orcid.org/0009-0004-8450-7112"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Junjie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074472751","display_name":"Jianzong Wang","orcid":"https://orcid.org/0000-0002-9237-4231"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Jianzong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044866795","display_name":"Jiguang Wan","orcid":"https://orcid.org/0000-0003-3440-4460"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wan, Jiguang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5016038454","display_name":"Jing Xiao","orcid":"https://orcid.org/0000-0001-9615-4749"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xiao, Jing","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9696,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.59232676},{"id":"https://openalex.org/keywords/conditional-probability-distribution","display_name":"Conditional probability distribution","score":0.51419616},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.45791382}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.74731874},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.6995718},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.59232676},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55742395},{"id":"https://openalex.org/C43555835","wikidata":"https://www.wikidata.org/wiki/Q2300258","display_name":"Conditional probability distribution","level":2,"score":0.51419616},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.47608888},{"id":"https://openalex.org/C2779227376","wikidata":"https://www.wikidata.org/wiki/Q6505497","display_name":"Layer (electronics)","level":2,"score":0.47142977},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.45791382},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.45189738},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.43140733},{"id":"https://openalex.org/C110121322","wikidata":"https://www.wikidata.org/wiki/Q865811","display_name":"Distribution (mathematics)","level":2,"score":0.41977894},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3846855},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.1885241},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1384626},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.09746","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.09746","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.09746","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.46,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4313148594","https://openalex.org/W4281697769","https://openalex.org/W3147584709","https://openalex.org/W2977677679","https://openalex.org/W2381986121","https://openalex.org/W2370918718","https://openalex.org/W2370081953","https://openalex.org/W2256933480","https://openalex.org/W2027854990","https://openalex.org/W1992327129"],"abstract_inverted_index":{"Out-of-distribution":[0],"(OOD)":[1],"detection":[2,132],"aims":[3],"at":[4],"enhancing":[5],"standard":[6],"deep":[7],"neural":[8],"networks":[9],"to":[10,38,45,78,91,125],"distinguish":[11],"anomalous":[12],"inputs":[13],"from":[14,74],"original":[15],"training":[16,27,61],"data.":[17],"Previous":[18],"progress":[19],"has":[20],"introduced":[21],"various":[22],"approaches":[23],"where":[24],"the":[25,75,108,126,136],"in-distribution":[26],"data":[28,43],"and":[29,40,96,113,121,130],"even":[30],"several":[31],"OOD":[32],"examples":[33],"are":[34],"prerequisites.":[35],"However,":[36],"due":[37],"privacy":[39],"security,":[41],"auxiliary":[42],"tends":[44],"be":[46],"impractical":[47],"in":[48,135],"a":[49,57],"real-world":[50],"scenario.":[51],"In":[52],"this":[53],"paper,":[54],"we":[55,86],"propose":[56],"data-free":[58],"method":[59,112],"without":[60],"on":[62,84],"natural":[63],"data,":[64],"called":[65],"Class-Conditional":[66],"Impressions":[67],"Reappearing":[68],"(C2IR),":[69],"which":[70],"utilizes":[71],"image":[72],"impressions":[73],"fixed":[76],"model":[77],"recover":[79],"class-conditional":[80,94],"feature":[81],"statistics.":[82],"Based":[83],"that,":[85],"introduce":[87],"Integral":[88],"Probability":[89],"Metrics":[90],"estimate":[92],"layer-wise":[93],"deviations":[95],"obtain":[97],"layer":[98],"weights":[99],"by":[100],"Measuring":[101],"Gradient-based":[102],"Importance":[103],"(MGI).":[104],"The":[105],"experiments":[106],"verify":[107],"effectiveness":[109],"of":[110],"our":[111],"indicate":[114],"that":[115],"C2IR":[116],"outperforms":[117],"other":[118],"post-hoc":[119],"methods":[120],"reaches":[122],"comparable":[123],"performance":[124],"full":[127],"access":[128],"(ID":[129],"OOD)":[131],"method,":[133],"especially":[134],"far-OOD":[137],"dataset":[138],"(SVHN).":[139]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4327990664","counts_by_year":[],"updated_date":"2025-04-08T23:11:09.366845","created_date":"2023-03-21"}