{"id":"https://openalex.org/W4327810437","doi":"https://doi.org/10.48550/arxiv.2303.09083","title":"Focus on Your Target: A Dual Teacher-Student Framework for Domain-adaptive Semantic Segmentation","display_name":"Focus on Your Target: A Dual Teacher-Student Framework for Domain-adaptive Semantic Segmentation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4327810437","doi":"https://doi.org/10.48550/arxiv.2303.09083"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.09083","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.09083","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025959130","display_name":"Xinyue Huo","orcid":"https://orcid.org/0000-0003-1724-9438"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huo, Xinyue","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075290241","display_name":"Lingxi Xie","orcid":"https://orcid.org/0000-0003-4831-9451"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Lingxi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046805800","display_name":"Wengang Zhou","orcid":"https://orcid.org/0000-0003-1690-9836"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Wengang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078141810","display_name":"Houqiang Li","orcid":"https://orcid.org/0000-0003-2188-3028"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Houqiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100393506","display_name":"Qi Tian","orcid":"https://orcid.org/0000-0002-7252-5047"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tian, Qi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"Applications of Deep Learning in Medical Imaging","score":0.988,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Visual Question Answering in Images and Videos","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.67093617},{"id":"https://openalex.org/keywords/domain-adaptation","display_name":"Domain Adaptation","score":0.576941},{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.559883},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.559253},{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.549251},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.533963},{"id":"https://openalex.org/keywords/effective-domain","display_name":"Effective domain","score":0.49999666},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.4943595},{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.41510814}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.797619},{"id":"https://openalex.org/C2776434776","wikidata":"https://www.wikidata.org/wiki/Q19246213","display_name":"Domain adaptation","level":3,"score":0.7397965},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7202891},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.70909154},{"id":"https://openalex.org/C2780980858","wikidata":"https://www.wikidata.org/wiki/Q110022","display_name":"Dual (grammatical number)","level":2,"score":0.6830975},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.67093617},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.6609394},{"id":"https://openalex.org/C184337299","wikidata":"https://www.wikidata.org/wiki/Q1437428","display_name":"Semantics (computer science)","level":2,"score":0.6043478},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59092766},{"id":"https://openalex.org/C58385900","wikidata":"https://www.wikidata.org/wiki/Q5347254","display_name":"Effective domain","level":5,"score":0.49999666},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.4943595},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.49387294},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.48804724},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.41510814},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.40519658},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39339685},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3382641},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14010897},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.13582626},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C124952713","wikidata":"https://www.wikidata.org/wiki/Q8242","display_name":"Literature","level":1,"score":0.0},{"id":"https://openalex.org/C157972887","wikidata":"https://www.wikidata.org/wiki/Q463359","display_name":"Convex optimization","level":3,"score":0.0},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.0},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.0},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.0},{"id":"https://openalex.org/C111110010","wikidata":"https://www.wikidata.org/wiki/Q2627315","display_name":"Convex combination","level":4,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.09083","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.09083","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.09083","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.4,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4297818280","https://openalex.org/W3204418343","https://openalex.org/W3132602785","https://openalex.org/W3046182208","https://openalex.org/W3035557009","https://openalex.org/W2955172689","https://openalex.org/W2531741693","https://openalex.org/W2343346879","https://openalex.org/W2341113105","https://openalex.org/W2186589590"],"abstract_inverted_index":{"We":[0,51],"study":[1],"unsupervised":[2],"domain":[3,42],"adaptation":[4],"(UDA)":[5],"for":[6,87],"semantic":[7],"segmentation.":[8],"Currently,":[9],"a":[10,80,88,97,107,144],"popular":[11],"UDA":[12,146],"framework":[13,102],"lies":[14],"in":[15,32,75],"self-training":[16,141],"which":[17],"endows":[18],"the":[19,29,33,40,48,56,62,65,71,76,93,113,118,129,162],"model":[20,121,131],"with":[21,106],"two-fold":[22],"abilities:":[23],"(i)":[24],"learning":[25,109],"reliable":[26],"semantics":[27],"from":[28,61],"labeled":[30,151],"images":[31],"source":[34],"domain,":[35,64],"and":[36,103,153,164,171,176],"(ii)":[37],"adapting":[38],"to":[39,123],"target":[41,63],"via":[43],"generating":[44],"pseudo":[45],"labels":[46],"on":[47,125,149,174],"unlabeled":[49,155],"images.":[50],"find":[52],"that,":[53],"by":[54],"decreasing/increasing":[55],"proportion":[57,114],"of":[58,115,169],"training":[59],"samples":[60],"'learning":[66],"ability'":[67,73],"is":[68,132,136],"strengthened/weakened":[69],"while":[70,128],"'adapting":[72],"goes":[74],"opposite":[77],"direction,":[78],"implying":[79],"conflict":[81],"between":[82],"these":[83],"two":[84],"abilities,":[85],"especially":[86],"single":[89],"model.":[90],"To":[91],"alleviate":[92],"issue,":[94],"we":[95],"propose":[96],"novel":[98],"dual":[99],"teacher-student":[100,120],"(DTS)":[101],"equip":[104],"it":[105],"bidirectional":[108],"strategy.":[110],"By":[111],"increasing":[112],"target-domain":[116],"data,":[117],"second":[119],"learns":[122],"'Focus":[124],"Your":[126],"Target'":[127],"first":[130],"not":[133],"affected.":[134],"DTS":[135,157],"easily":[137],"plugged":[138],"into":[139],"existing":[140],"approaches.":[142],"In":[143],"standard":[145],"scenario":[147],"(training":[148],"synthetic,":[150],"data":[152],"real,":[154],"data),":[156],"shows":[158],"consistent":[159],"gains":[160],"over":[161],"baselines":[163],"sets":[165],"new":[166],"state-of-the-art":[167],"results":[168],"76.5\\%":[170],"75.1\\%":[172],"mIoUs":[173],"GTAv$\\rightarrow$Cityscapes":[175],"SYNTHIA$\\rightarrow$Cityscapes,":[177],"respectively.":[178]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4327810437","counts_by_year":[],"updated_date":"2024-12-04T10:43:18.498480","created_date":"2023-03-19"}