{"id":"https://openalex.org/W4327810203","doi":"https://doi.org/10.48550/arxiv.2303.08817","title":"DeepMIM: Deep Supervision for Masked Image Modeling","display_name":"DeepMIM: Deep Supervision for Masked Image Modeling","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4327810203","doi":"https://doi.org/10.48550/arxiv.2303.08817"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.08817","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.08817","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048891976","display_name":"Sucheng Ren","orcid":"https://orcid.org/0000-0003-4730-8435"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ren, Sucheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090973869","display_name":"Fangyun Wei","orcid":"https://orcid.org/0000-0001-8784-4916"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wei, Fangyun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102018867","display_name":"Samuel Albanie","orcid":"https://orcid.org/0000-0003-1732-9198"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Albanie, Samuel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100459168","display_name":"Zheng Zhang","orcid":"https://orcid.org/0000-0003-1470-6998"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Zheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101976576","display_name":"Han Hu","orcid":"https://orcid.org/0000-0001-5104-6146"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Han","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":10,"citation_normalized_percentile":{"value":0.999887,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.978,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.944,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/normalization","display_name":"Normalization","score":0.55223954},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.54008114},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.436421}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76641774},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.731809},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.71181333},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.64035696},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6172768},{"id":"https://openalex.org/C136886441","wikidata":"https://www.wikidata.org/wiki/Q926129","display_name":"Normalization (sociology)","level":2,"score":0.55223954},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.54008114},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.49984384},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.482833},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4430756},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.44082022},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.436421},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3626372},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.13622281},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.067539304},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C19165224","wikidata":"https://www.wikidata.org/wiki/Q23404","display_name":"Anthropology","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.08817","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.08817","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.08817","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4377865163","https://openalex.org/W4315865067","https://openalex.org/W4297807321","https://openalex.org/W4287755480","https://openalex.org/W3193857078","https://openalex.org/W3113607506","https://openalex.org/W3000197790","https://openalex.org/W2979433843","https://openalex.org/W2898211994","https://openalex.org/W2888956734"],"abstract_inverted_index":{"Deep":[0],"supervision,":[1],"which":[2],"involves":[3],"extra":[4],"supervisions":[5],"to":[6,96],"the":[7,21,30,35,42,47,93,114],"intermediate":[8],"features":[9],"of":[10,49,117,132],"a":[11,78,83,130,156],"neural":[12],"network,":[13],"was":[14,60],"widely":[15],"used":[16],"in":[17,20,57],"image":[18,58,73,170],"classification":[19,59,171],"early":[22],"deep":[23,55,69,90],"learning":[24],"era":[25],"since":[26],"it":[27],"significantly":[28,112],"reduces":[29],"training":[31],"difficulty":[32],"and":[33,52,104,187,195],"eases":[34],"optimization":[36],"like":[37],"avoiding":[38],"gradient":[39],"vanish":[40],"over":[41],"vanilla":[43],"training.":[44],"Nevertheless,":[45],"with":[46,125,155],"emergence":[48],"normalization":[50],"techniques":[51],"residual":[53],"connection,":[54],"supervision":[56,70,91],"gradually":[61],"phased":[62],"out.":[63],"In":[64,120],"this":[65],"paper,":[66],"we":[67,87],"revisit":[68],"for":[71],"masked":[72],"modeling":[74],"(MIM)":[75],"that":[76,89],"pre-trains":[77],"Vision":[79],"Transformer":[80],"(ViT)":[81],"via":[82],"mask-and-predict":[84],"scheme.":[85],"Experimentally,":[86],"find":[88],"drives":[92],"shallower":[94],"layers":[95],"learn":[97],"more":[98],"meaningful":[99],"representations,":[100],"accelerates":[101],"model":[102,161],"convergence,":[103],"expands":[105],"attention":[106],"diversities.":[107],"Our":[108],"approach,":[109],"called":[110],"DeepMIM,":[111],"boosts":[113],"representation":[115],"capability":[116],"each":[118],"layer.":[119],"addition,":[121],"DeepMIM":[122,139,154],"is":[123],"compatible":[124],"many":[126],"MIM":[127],"models":[128,196],"across":[129],"range":[131],"reconstruction":[133],"targets.":[134],"For":[135],"instance,":[136],"using":[137],"ViT-B,":[138],"on":[140,146,165,175,185,192],"MAE":[141,149],"achieves":[142,162],"84.2":[143],"top-1":[144,173],"accuracy":[145,174],"ImageNet,":[147],"outperforming":[148,177],"by":[150,179],"+0.6.":[151],"By":[152],"combining":[153],"stronger":[157],"tokenizer":[158],"CLIP,":[159],"our":[160],"state-of-the-art":[163],"performance":[164],"various":[166],"downstream":[167],"tasks,":[168],"including":[169],"(85.6":[172],"ImageNet-1K,":[176],"MAE-CLIP":[178],"+0.8),":[180],"object":[181],"detection":[182],"(52.8":[183],"APbox":[184],"COCO)":[186],"semantic":[188],"segmentation":[189],"(53.1":[190],"mIoU":[191],"ADE20K).":[193],"Code":[194],"are":[197],"available":[198],"at":[199],"https://github.com/OliverRensu/DeepMIM.":[200]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4327810203","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":2}],"updated_date":"2025-03-25T10:44:56.268574","created_date":"2023-03-19"}