{"id":"https://openalex.org/W4327525275","doi":"https://doi.org/10.48550/arxiv.2303.07679","title":"Feature representations useful for predicting image memorability","display_name":"Feature representations useful for predicting image memorability","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4327525275","doi":"https://doi.org/10.48550/arxiv.2303.07679"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.07679","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.07679","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5111079808","display_name":"Takumi Harada","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Harada, Takumi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101708375","display_name":"Hiroyuki Sakai","orcid":"https://orcid.org/0000-0002-5160-5697"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sakai, Hiroyuki","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9731,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9731,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.7080127},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.67167103},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.54598033},{"id":"https://openalex.org/keywords/predictive-modelling","display_name":"Predictive modelling","score":0.41967142}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7400916},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72255224},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.7080127},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6761941},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.67167103},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6278837},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.57849},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.54598033},{"id":"https://openalex.org/C45804977","wikidata":"https://www.wikidata.org/wiki/Q7239673","display_name":"Predictive modelling","level":2,"score":0.41967142},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.35992223},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35024992},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.07679","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2303.07679","pdf_url":"http://arxiv.org/pdf/2303.07679","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.07679","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.07679","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391266461","https://openalex.org/W4321487865","https://openalex.org/W4313906399","https://openalex.org/W4312417841","https://openalex.org/W4293226380","https://openalex.org/W4239306820","https://openalex.org/W2947043951","https://openalex.org/W2811106690","https://openalex.org/W2590798552","https://openalex.org/W1603736412"],"abstract_inverted_index":{"Prediction":[0],"of":[1,14,128,155,181,209],"image":[2,217],"memorability":[3,46,71,103,134,152,176,193],"has":[4,20],"attracted":[5],"interest":[6],"in":[7,38,64,82,95,121,191,215],"various":[8],"fields.":[9],"Consequently,":[10],"the":[11,23,44,111,118,122,129,141,145,151,156,163,179,186,201],"prediction":[12,47,72,104,135,153],"accuracy":[13,48,73,105,154,168],"convolutional":[15],"neural":[16],"network":[17],"(CNN)":[18],"models":[19,40,66,85,132,173],"been":[21],"approaching":[22],"empirical":[24],"upper":[25],"bound":[26],"estimated":[27],"based":[28],"on":[29,195],"human":[30],"consistency.":[31],"However,":[32],"identifying":[33],"which":[34,116],"feature":[35,62,196,210],"representations":[36,63,211],"embedded":[37],"CNN":[39,65,84,131,172,187],"are":[41],"responsible":[42],"for":[43,87,133,175],"high":[45,102],"remains":[49],"an":[50],"open":[51],"question.":[52],"To":[53],"tackle":[54],"this":[55,96,182],"problem,":[56],"we":[57],"sought":[58],"to":[59,170,200],"identify":[60],"memorability-related":[61],"using":[67],"brain":[68,75,108,138],"similarity.":[69],"Specifically,":[70],"and":[74,212],"similarity":[76,109,139],"were":[77],"examined":[78],"across":[79],"16,860":[80],"layers":[81,100],"64":[83,130],"pretrained":[86],"object":[88],"recognition.":[89],"A":[90],"clear":[91],"tendency":[92],"was":[93],"observed":[94],"comprehensive":[97],"analysis":[98,159],"that":[99,137,162,185],"with":[101,110,140,150],"had":[106],"higher":[107],"inferior":[112],"temporal":[113],"(IT)":[114],"cortex,":[115],"is":[117],"highest":[119],"stage":[120],"ventral":[123],"visual":[124],"pathway.":[125],"Furthermore,":[126],"fine-tuning":[127],"revealed":[136],"IT":[142,202],"cortex":[143],"at":[144],"penultimate":[146],"layer":[147],"positively":[148],"correlated":[149],"models.":[157],"This":[158,204],"also":[160],"showed":[161],"best":[164],"fine-tuned":[165],"model":[166],"provided":[167],"comparable":[169],"state-of-the-art":[171],"developed":[174],"prediction.":[177],"Overall,":[178],"results":[180],"study":[183,205],"indicated":[184],"models'":[188],"great":[189],"success":[190],"predicting":[192,216],"relies":[194],"representation":[197],"acquisition,":[198],"similar":[199],"cortex.":[203],"advances":[206],"our":[207],"understanding":[208],"their":[213],"use":[214],"memorability.":[218]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4327525275","counts_by_year":[],"updated_date":"2025-01-04T17:23:43.707053","created_date":"2023-03-17"}