{"id":"https://openalex.org/W4324299407","doi":"https://doi.org/10.48550/arxiv.2303.07243","title":"Sim-to-Real Deep Reinforcement Learning based Obstacle Avoidance for UAVs under Measurement Uncertainty","display_name":"Sim-to-Real Deep Reinforcement Learning based Obstacle Avoidance for UAVs under Measurement Uncertainty","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4324299407","doi":"https://doi.org/10.48550/arxiv.2303.07243"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.07243","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.07243","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088763781","display_name":"Bhaskar Joshi","orcid":"https://orcid.org/0009-0004-1743-7265"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Joshi, Bhaskar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043127138","display_name":"Dhruv Kapur","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kapur, Dhruv","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5026782960","display_name":"Harikumar Kandath","orcid":"https://orcid.org/0000-0002-5500-7133"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kandath, Harikumar","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10586","display_name":"Robotic Path Planning Algorithms","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10586","display_name":"Robotic Path Planning Algorithms","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11133","display_name":"UAV Applications and Optimization","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/obstacle-avoidance","display_name":"Obstacle avoidance","score":0.72066975},{"id":"https://openalex.org/keywords/waypoint","display_name":"Waypoint","score":0.48313233},{"id":"https://openalex.org/keywords/gaussian-noise","display_name":"Gaussian Noise","score":0.44332668}],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.74607015},{"id":"https://openalex.org/C6683253","wikidata":"https://www.wikidata.org/wiki/Q7075535","display_name":"Obstacle avoidance","level":4,"score":0.72066975},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.67778695},{"id":"https://openalex.org/C157286648","wikidata":"https://www.wikidata.org/wiki/Q846780","display_name":"Kalman filter","level":2,"score":0.59320104},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.56313396},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5457834},{"id":"https://openalex.org/C2781271823","wikidata":"https://www.wikidata.org/wiki/Q138081","display_name":"Waypoint","level":2,"score":0.48313233},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.47181094},{"id":"https://openalex.org/C206833254","wikidata":"https://www.wikidata.org/wiki/Q5421817","display_name":"Extended Kalman filter","level":3,"score":0.46863437},{"id":"https://openalex.org/C4199805","wikidata":"https://www.wikidata.org/wiki/Q2725903","display_name":"Gaussian noise","level":2,"score":0.44332668},{"id":"https://openalex.org/C47446073","wikidata":"https://www.wikidata.org/wiki/Q5165890","display_name":"Control theory (sociology)","level":3,"score":0.43374255},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.4110458},{"id":"https://openalex.org/C44154836","wikidata":"https://www.wikidata.org/wiki/Q45045","display_name":"Simulation","level":1,"score":0.3960333},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.34189016},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.25147012},{"id":"https://openalex.org/C19966478","wikidata":"https://www.wikidata.org/wiki/Q4810574","display_name":"Mobile robot","level":3,"score":0.15475535},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.13824293},{"id":"https://openalex.org/C2775924081","wikidata":"https://www.wikidata.org/wiki/Q55608371","display_name":"Control (management)","level":2,"score":0.084744036},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.07243","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.07243","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.07243","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4379780406","https://openalex.org/W4360939124","https://openalex.org/W3176873138","https://openalex.org/W3033981548","https://openalex.org/W3006894944","https://openalex.org/W2899287767","https://openalex.org/W2688471429","https://openalex.org/W2275928629","https://openalex.org/W2077345734","https://openalex.org/W1597099033"],"abstract_inverted_index":{"Deep":[0,28],"Reinforcement":[1,29],"Learning":[2,30],"is":[3,56,97],"quickly":[4],"becoming":[5],"a":[6,60,75,196,208],"popular":[7],"method":[8],"for":[9,38,49,104],"training":[10,161],"autonomous":[11],"Unmanned":[12],"Aerial":[13],"Vehicles":[14],"(UAVs).":[15],"Our":[16],"work":[17],"analyzes":[18],"the":[19,25,46,72,80,109,118,127,137,150,165,176,182,190,205],"effects":[20,119],"of":[21,27,74,102,111,114,120,139,164,185],"measurement":[22],"uncertainty":[23,41],"on":[24],"performance":[26,73,135,156],"(DRL)":[31],"based":[32],"waypoint":[33],"navigation":[34,171],"and":[35,51,68,92,131,162,203],"obstacle":[36],"avoidance":[37],"UAVs.":[39],"Measurement":[40,54],"originates":[42],"from":[43],"noise":[44,148],"in":[45,86,108,136,157,175,193,207],"sensors":[47],"used":[48],"localization":[50],"detecting":[52],"obstacles.":[53],"uncertainty/noise":[55],"considered":[57],"to":[58,116],"follow":[59],"Gaussian":[61],"probability":[62],"distribution":[63],"with":[64,89,99],"unknown":[65],"non-zero":[66],"mean":[67],"variance.":[69],"We":[70],"evaluate":[71,181],"DRL":[76,166],"agent":[77,167],"trained":[78,192],"using":[79],"Proximal":[81],"Policy":[82],"Optimization":[83],"(PPO)":[84],"algorithm":[85],"an":[87],"environment":[88,96],"continuous":[90],"state":[91],"action":[93],"spaces.":[94],"The":[95],"randomized":[98],"different":[100],"numbers":[101],"obstacles":[103],"each":[105],"simulation":[106,194],"episode":[107],"presence":[110,138],"varying":[112],"degrees":[113],"noise,":[115],"capture":[117],"realistic":[121],"sensor":[122],"measurements.":[123],"Denoising":[124],"techniques":[125],"like":[126],"low":[128],"pass":[129],"filter":[130,133],"Kalman":[132],"improve":[134],"unbiased":[140],"noise.":[141],"Moreover,":[142],"we":[143,188],"show":[144],"that":[145],"artificially":[146],"injecting":[147],"into":[149],"measurements":[151],"during":[152],"evaluation":[153],"actually":[154],"improves":[155],"certain":[158],"scenarios.":[159],"Extensive":[160],"testing":[163],"under":[168],"various":[169],"UAV":[170,198],"scenarios":[172],"are":[173],"performed":[174],"PyBullet":[177],"physics":[178],"simulator.":[179],"To":[180],"practical":[183],"validity":[184],"our":[186],"method,":[187],"port":[189],"policy":[191],"onto":[195],"real":[197],"without":[199],"any":[200],"further":[201],"modifications":[202],"verify":[204],"results":[206],"real-world":[209],"environment.":[210]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4324299407","counts_by_year":[],"updated_date":"2025-04-18T08:05:51.773515","created_date":"2023-03-16"}