{"id":"https://openalex.org/W4324331627","doi":"https://doi.org/10.48550/arxiv.2303.06058","title":"A General Recipe for the Analysis of Randomized Multi-Armed Bandit Algorithms","display_name":"A General Recipe for the Analysis of Randomized Multi-Armed Bandit Algorithms","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4324331627","doi":"https://doi.org/10.48550/arxiv.2303.06058"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.06058","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.06058","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029768553","display_name":"Dorian Baudry","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Baudry, Dorian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100558802","display_name":"Kazuya Suzuki","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Suzuki, Kazuya","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5112464181","display_name":"Junya Honda","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Honda, Junya","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/randomized-algorithm","display_name":"Randomized Algorithm","score":0.47289482},{"id":"https://openalex.org/keywords/constant","display_name":"Constant (computer programming)","score":0.46912646}],"concepts":[{"id":"https://openalex.org/C50817715","wikidata":"https://www.wikidata.org/wiki/Q79895177","display_name":"Regret","level":2,"score":0.8140902},{"id":"https://openalex.org/C34388435","wikidata":"https://www.wikidata.org/wiki/Q2267362","display_name":"Bounded function","level":2,"score":0.7163856},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.6474996},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.5865772},{"id":"https://openalex.org/C39927690","wikidata":"https://www.wikidata.org/wiki/Q11197","display_name":"Logarithm","level":2,"score":0.58218646},{"id":"https://openalex.org/C55974624","wikidata":"https://www.wikidata.org/wiki/Q1188504","display_name":"Exponential family","level":2,"score":0.5533827},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.52508533},{"id":"https://openalex.org/C128669082","wikidata":"https://www.wikidata.org/wiki/Q583461","display_name":"Randomized algorithm","level":2,"score":0.47289482},{"id":"https://openalex.org/C2777027219","wikidata":"https://www.wikidata.org/wiki/Q1284190","display_name":"Constant (computer programming)","level":2,"score":0.46912646},{"id":"https://openalex.org/C179254644","wikidata":"https://www.wikidata.org/wiki/Q13222844","display_name":"Moment (physics)","level":2,"score":0.4679849},{"id":"https://openalex.org/C2780586882","wikidata":"https://www.wikidata.org/wiki/Q7520643","display_name":"Simple (philosophy)","level":2,"score":0.46037823},{"id":"https://openalex.org/C149441793","wikidata":"https://www.wikidata.org/wiki/Q200726","display_name":"Probability distribution","level":2,"score":0.42008466},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.38282868},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.3601218},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34457806},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.26861158},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.13996455},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.06058","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2303.06058","pdf_url":"http://arxiv.org/pdf/2303.06058","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.06058","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.06058","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4376155396","https://openalex.org/W4288373430","https://openalex.org/W4287753704","https://openalex.org/W32534769","https://openalex.org/W3158925485","https://openalex.org/W3036260055","https://openalex.org/W2996735312","https://openalex.org/W2971351794","https://openalex.org/W2947263763","https://openalex.org/W1947085858"],"abstract_inverted_index":{"In":[0,85],"this":[1],"paper":[2],"we":[3,48,87],"propose":[4],"a":[5,21,41,45,101,127,142,162],"general":[6],"methodology":[7],"to":[8,39,134],"derive":[9],"regret":[10,103],"bounds":[11],"for":[12,65,94,109,148],"randomized":[13],"multi-armed":[14],"bandit":[15,52],"algorithms.":[16],"It":[17],"consists":[18],"in":[19],"checking":[20],"set":[22],"of":[23,30,37,105,122,137,154],"sufficient":[24],"conditions":[25,81],"on":[26,34,82],"the":[27,35,66,111,120],"sampling":[28],"probability":[29],"each":[31],"arm":[32],"and":[33,58],"family":[36],"distributions":[38,67,78,140,155],"prove":[40,88],"logarithmic":[42],"regret.":[43],"As":[44],"direct":[46],"application":[47],"revisit":[49],"two":[50],"famous":[51],"algorithms,":[53],"Minimum":[54],"Empirical":[55],"Divergence":[56],"(MED)":[57],"Thompson":[59],"Sampling":[60],"(TS),":[61],"under":[62],"various":[63],"models":[64],"including":[68],"single":[69],"parameter":[70],"exponential":[71],"families,":[72],"Gaussian":[73],"distributions,":[74,76],"bounded":[75,143,160],"or":[77],"satisfying":[79],"some":[80,106,135,151],"their":[83],"moments.":[84],"particular,":[86],"that":[89],"MED":[90],"is":[91,113,158],"asymptotically":[92],"optimal":[93],"all":[95],"these":[96],"models,":[97],"but":[98],"also":[99],"provide":[100],"simple":[102],"analysis":[104],"TS":[107,130],"algorithms":[108],"which":[110],"optimality":[112],"already":[114],"known.":[115],"We":[116],"then":[117],"further":[118],"illustrate":[119],"interest":[121],"our":[123],"approach,":[124],"by":[125,161],"analyzing":[126],"new":[128],"Non-Parametric":[129],"algorithm":[131],"(h-NPTS),":[132],"adapted":[133],"families":[136,153],"unbounded":[138],"reward":[139],"with":[141],"h-moment.":[144],"This":[145],"model":[146],"can":[147],"instance":[149],"capture":[150],"non-parametric":[152],"whose":[156],"variance":[157],"upper":[159],"known":[163],"constant.":[164]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4324331627","counts_by_year":[],"updated_date":"2025-01-04T17:24:09.015115","created_date":"2023-03-16"}