{"id":"https://openalex.org/W4323571925","doi":"https://doi.org/10.48550/arxiv.2303.03237","title":"Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation","display_name":"Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4323571925","doi":"https://doi.org/10.48550/arxiv.2303.03237"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.03237","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.03237","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036807127","display_name":"David Holzm\u00fcller","orcid":"https://orcid.org/0000-0002-9443-0049"},"institutions":[{"id":"https://openalex.org/I100066346","display_name":"University of Stuttgart","ror":"https://ror.org/04vnq7t77","country_code":"DE","type":"education","lineage":["https://openalex.org/I100066346"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Holzm\u00fcller, David","raw_affiliation_strings":["University of Stuttgart (Germany)"],"affiliations":[{"raw_affiliation_string":"University of Stuttgart (Germany)","institution_ids":["https://openalex.org/I100066346"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001483226","display_name":"Francis Bach","orcid":"https://orcid.org/0000-0001-8644-1058"},"institutions":[],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Bach, Francis","raw_affiliation_strings":["SIERRA - Statistical Machine Learning and Parsimony (France)"],"affiliations":[{"raw_affiliation_string":"SIERRA - Statistical Machine Learning and Parsimony (France)","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.778623,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12056","display_name":"Markov Chains and Monte Carlo Methods","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/exponent","display_name":"Exponent","score":0.5443364},{"id":"https://openalex.org/keywords/log-log-plot","display_name":"Log-log plot","score":0.44654375}],"concepts":[{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.6572598},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.652249},{"id":"https://openalex.org/C57869625","wikidata":"https://www.wikidata.org/wiki/Q1783502","display_name":"Rate of convergence","level":3,"score":0.6239519},{"id":"https://openalex.org/C63553672","wikidata":"https://www.wikidata.org/wiki/Q581168","display_name":"Binary logarithm","level":2,"score":0.6131083},{"id":"https://openalex.org/C2780388253","wikidata":"https://www.wikidata.org/wiki/Q5421508","display_name":"Exponent","level":2,"score":0.5443364},{"id":"https://openalex.org/C90119067","wikidata":"https://www.wikidata.org/wiki/Q43260","display_name":"Polynomial","level":2,"score":0.54054874},{"id":"https://openalex.org/C311688","wikidata":"https://www.wikidata.org/wiki/Q2393193","display_name":"Time complexity","level":2,"score":0.49750593},{"id":"https://openalex.org/C42812","wikidata":"https://www.wikidata.org/wiki/Q1082910","display_name":"Partition (number theory)","level":2,"score":0.48187527},{"id":"https://openalex.org/C2778401447","wikidata":"https://www.wikidata.org/wiki/Q7140637","display_name":"Partition function (quantum field theory)","level":2,"score":0.45990843},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.4573942},{"id":"https://openalex.org/C195292467","wikidata":"https://www.wikidata.org/wiki/Q2091879","display_name":"Log-log plot","level":3,"score":0.44654375},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.44199663},{"id":"https://openalex.org/C202615002","wikidata":"https://www.wikidata.org/wiki/Q783507","display_name":"Differentiable function","level":2,"score":0.43339288},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.43151495},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.43106326},{"id":"https://openalex.org/C145446738","wikidata":"https://www.wikidata.org/wiki/Q319913","display_name":"Convex function","level":3,"score":0.42894247},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.41655117},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.41408116},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.36161372},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.19635233},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.18798688},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15642881},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.08614859},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.03237","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hal.science/hal-04018103","pdf_url":"https://hal.science/hal-04018103/document","source":null,"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.03237","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.03237","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4243665620","https://openalex.org/W2623150993","https://openalex.org/W2065008672","https://openalex.org/W2055932080","https://openalex.org/W2052169362","https://openalex.org/W2047234016","https://openalex.org/W2035522910","https://openalex.org/W2005615533","https://openalex.org/W1608733163","https://openalex.org/W1529311266"],"abstract_inverted_index":{"Sampling":[0],"from":[1,46],"Gibbs":[2],"distributions":[3],"$p(x)":[4],"\\propto":[5],"\\exp(-V(x)/\\varepsilon)$":[6],"and":[7,19,109,172,177,192,202,208,230,254],"computing":[8],"their":[9],"log-partition":[10,173,203],"function":[11,93,111],"are":[12,26,175,205],"fundamental":[13],"tasks":[14],"in":[15,38,51,83,128,183],"statistics,":[16],"machine":[17],"learning,":[18],"statistical":[20],"physics.":[21],"However,":[22],"while":[23],"efficient":[24],"algorithms":[25,43,90],"known":[27,69,96],"for":[28,79,89,123,170,200,212],"convex":[29],"potentials":[30],"$V$,":[31],"the":[32,39,47,52,86,101,110,116,131,152,197,249],"situation":[33],"is":[34,68,95,155,163],"much":[35],"more":[36],"difficult":[37],"non-convex":[40],"case,":[41],"where":[42,100,151],"necessarily":[44],"suffer":[45],"curse":[48,117],"of":[49,65,118,130,157,190,224],"dimensionality":[50,119],"worst":[53],"case.":[54],"For":[55],"optimization,":[56],"which":[57],"can":[58,103,120,143,180],"be":[59,98,113,121,145,181],"seen":[60],"as":[61],"a":[62,225],"low-temperature":[63],"limit":[64],"sampling,":[66,252],"it":[67,135,162],"that":[70,139,196,232],"smooth":[71,124],"functions":[72,82,125],"$V$":[73],"allow":[74],"faster":[75,210],"convergence":[76,132],"rates.":[77,241],"Specifically,":[78],"$m$-times":[80],"differentiable":[81],"$d$":[84],"dimensions,":[85],"optimal":[87,198],"rate":[88],"with":[91,147,186],"$n$":[92],"evaluations":[94],"to":[97,112,165],"$O(n^{-m/d})$,":[99],"constant":[102],"potentially":[104],"depend":[105],"on":[106,248],"$m,":[107],"d$":[108],"optimized.":[114],"Hence,":[115,161],"alleviated":[122],"at":[126],"least":[127],"terms":[129],"rate.":[133],"Recently,":[134],"has":[136],"been":[137],"shown":[138],"similarly":[140],"fast":[141],"rates":[142,169,199],"also":[144,244],"achieved":[146],"polynomial":[148,184],"runtime":[149],"$O(n^{3.5})$,":[150],"exponent":[153,188],"$3.5$":[154],"independent":[156,189],"$m$":[158,191],"or":[159],"$d$.":[160,193],"natural":[164],"ask":[166],"whether":[167,178],"similar":[168],"sampling":[171,201,219],"computation":[174,204],"possible,":[176],"they":[179,233],"realized":[182],"time":[185],"an":[187,222],"We":[194,214],"show":[195],"sometimes":[206,209,234],"equal":[207],"than":[211],"optimization.":[213],"then":[215],"analyze":[216],"various":[217],"polynomial-time":[218],"algorithms,":[220],"including":[221],"extension":[223],"recent":[226],"promising":[227],"optimization":[228,255],"approach,":[229],"find":[231],"exhibit":[235],"interesting":[236],"behavior":[237],"but":[238],"no":[239],"near-optimal":[240],"Our":[242],"results":[243],"give":[245],"further":[246],"insights":[247],"relation":[250],"between":[251],"log-partition,":[253],"problems.":[256]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4323571925","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-01-01T23:44:05.199846","created_date":"2023-03-09"}