{"id":"https://openalex.org/W4323570312","doi":"https://doi.org/10.48550/arxiv.2303.02967","title":"Automated Peripancreatic Vessel Segmentation and Labeling Based on Iterative Trunk Growth and Weakly Supervised Mechanism","display_name":"Automated Peripancreatic Vessel Segmentation and Labeling Based on Iterative Trunk Growth and Weakly Supervised Mechanism","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4323570312","doi":"https://doi.org/10.48550/arxiv.2303.02967"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.02967","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.02967","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5066984016","display_name":"Liwen Zou","orcid":"https://orcid.org/0000-0003-4085-4003"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zou, Liwen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102334337","display_name":"Zhenghua Cai","orcid":"https://orcid.org/0000-0003-2723-8206"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cai, Zhenghua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080252955","display_name":"Liang Mao","orcid":"https://orcid.org/0000-0002-7112-9421"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mao, Liang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047133701","display_name":"Ziwei Nie","orcid":"https://orcid.org/0000-0002-4499-7207"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nie, Ziwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108999846","display_name":"Yudong Qiu","orcid":"https://orcid.org/0009-0007-8227-9322"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qiu, Yudong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5034964028","display_name":"Xiaoping Yang","orcid":"https://orcid.org/0000-0002-4370-517X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Xiaoping","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11438","display_name":"Retinal Imaging and Analysis","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11438","display_name":"Retinal Imaging and Analysis","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dice","display_name":"Dice","score":0.47271392}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.8412514},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7073494},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6683484},{"id":"https://openalex.org/C54170458","wikidata":"https://www.wikidata.org/wiki/Q663554","display_name":"Voxel","level":2,"score":0.5967926},{"id":"https://openalex.org/C34736171","wikidata":"https://www.wikidata.org/wiki/Q918333","display_name":"Preprocessor","level":2,"score":0.5386192},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4766841},{"id":"https://openalex.org/C2781197403","wikidata":"https://www.wikidata.org/wiki/Q193472","display_name":"Trunk","level":2,"score":0.47330013},{"id":"https://openalex.org/C22029948","wikidata":"https://www.wikidata.org/wiki/Q45089","display_name":"Dice","level":2,"score":0.47271392},{"id":"https://openalex.org/C143587482","wikidata":"https://www.wikidata.org/wiki/Q1543216","display_name":"Iterative and incremental development","level":2,"score":0.43481869},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.087300986},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C115903868","wikidata":"https://www.wikidata.org/wiki/Q80993","display_name":"Software engineering","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.02967","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.02967","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.02967","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Decent work and economic growth","id":"https://metadata.un.org/sdg/8","score":0.41}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4366341510","https://openalex.org/W3104750253","https://openalex.org/W3021239166","https://openalex.org/W2906397153","https://openalex.org/W2586273397","https://openalex.org/W2483429559","https://openalex.org/W2390936256","https://openalex.org/W2385445039","https://openalex.org/W2016385589","https://openalex.org/W2009559548"],"abstract_inverted_index":{"Peripancreatic":[0,82],"vessel":[1,159],"segmentation":[2,31,95,125,226,251],"and":[3,17,36,43,72,85,126,166,189,206,252],"anatomical":[4,53,208,256],"labeling":[5,47,129,209,257],"play":[6],"extremely":[7],"important":[8],"roles":[9],"to":[10,89,185,211],"assist":[11],"the":[12,94,104,152,162,169,182,213,233,240],"early":[13],"diagnosis,":[14],"surgery":[15],"planning":[16],"prognosis":[18],"for":[19,33,66,97,123,132,168,201,224,258],"patients":[20],"with":[21,40,51,239],"pancreatic":[22],"tumors.":[23],"However,":[24],"most":[25,153],"current":[26],"techniques":[27],"cannot":[28,49],"achieve":[29,220,246],"satisfactory":[30],"performance":[32,96,254],"peripancreatic":[34,98,105,259],"veins":[35],"usually":[37],"make":[38],"predictions":[39],"poor":[41],"integrity":[42],"connectivity.":[44],"Besides,":[45],"unsupervised":[46,198],"algorithms":[48],"deal":[50],"complex":[52],"variation":[54],"while":[55],"fully":[56,190],"supervised":[57,128],"methods":[58],"require":[59],"a":[60,142,157],"large":[61],"number":[62],"of":[63,141,144,149,156,196,222,248],"voxel-wise":[64],"annotations":[65],"training,":[67],"which":[68,150,231],"is":[69,139],"very":[70],"labor-intensive":[71],"time-consuming.":[73],"To":[74],"address":[75],"these":[76],"problems,":[77],"we":[78,244],"propose":[79],"our":[80,114,228],"Automated":[81],"vEssel":[83],"Segmentation":[84],"lAbeling":[86],"(APESA)":[87],"framework,":[88],"not":[90],"only":[91],"highly":[92],"improve":[93],"veins,":[99],"but":[100],"also":[101,245],"efficiently":[102],"identify":[103],"artery":[106,133],"branches.":[107],"There":[108],"are":[109],"two":[110],"core":[111],"modules":[112],"in":[113],"proposed":[115,137,193],"APESA":[116],"framework:":[117],"iterative":[118,179],"trunk":[119,145,155,184],"growth":[120,146,171],"module":[121],"(ITGM)":[122],"vein":[124,225],"weakly":[127],"mechanism":[130],"(WSLM)":[131],"branch":[134,174,204,214],"identification.":[135],"Our":[136,177,192],"ITGM":[138],"composed":[140],"series":[143],"modules,":[147],"each":[148],"chooses":[151],"reliable":[154],"basic":[158],"prediction":[160],"by":[161,173,217,235],"largest":[163],"connected":[164],"constraint,":[165],"seeks":[167],"possible":[170],"branches":[172],"proposal":[175],"network.":[176],"designed":[178],"process":[180],"guides":[181],"raw":[183],"be":[186],"more":[187],"complete":[188],"connected.":[191],"WSLM":[194],"consists":[195],"an":[197,207],"rule-based":[199],"preprocessing":[200],"generating":[202],"pseudo":[203],"annotations,":[205],"network":[210],"learn":[212],"distribution":[215],"voxel":[216],"voxel.":[218],"We":[219],"Dice":[221,247],"94.01%":[223],"on":[227,250,255],"collected":[229],"dataset,":[230],"boosts":[232],"accuracy":[234],"nearly":[236],"10%":[237],"compared":[238],"state-of-the-art":[241],"methods.":[242],"Additionally,":[243],"97.01%":[249],"competitive":[253],"arteries.":[260]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4323570312","counts_by_year":[],"updated_date":"2025-04-14T12:26:21.891156","created_date":"2023-03-09"}