{"id":"https://openalex.org/W4323555784","doi":"https://doi.org/10.48550/arxiv.2303.02245","title":"Exploring Self-Supervised Representation Learning For Low-Resource Medical Image Analysis","display_name":"Exploring Self-Supervised Representation Learning For Low-Resource Medical Image Analysis","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4323555784","doi":"https://doi.org/10.48550/arxiv.2303.02245"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.02245","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.02245","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013857985","display_name":"Soumitri Chattopadhyay","orcid":"https://orcid.org/0000-0002-2647-6053"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chattopadhyay, Soumitri","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037361439","display_name":"Soham Ganguly","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ganguly, Soham","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038789828","display_name":"Sreejit Chaudhury","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chaudhury, Sreejit","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101977185","display_name":"Sayan Nag","orcid":"https://orcid.org/0000-0001-5652-125X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nag, Sayan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5075720299","display_name":"Samiran Chattopadhyay","orcid":"https://orcid.org/0000-0002-8929-9605"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chattopadhyay, Samiran","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9891,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9807,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.61076295},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.5371075},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.53519595}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7868913},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.6343312},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.61076295},{"id":"https://openalex.org/C206345919","wikidata":"https://www.wikidata.org/wiki/Q20380951","display_name":"Resource (disambiguation)","level":2,"score":0.5937544},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.573632},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5373577},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.5371075},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.53519595},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.52553624},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.46867806},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.4063332},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.06719303},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.02245","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2303.02245","pdf_url":"http://arxiv.org/pdf/2303.02245","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.02245","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.02245","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4318813552","https://openalex.org/W4287241967","https://openalex.org/W4282827391","https://openalex.org/W3201126466","https://openalex.org/W3193920202","https://openalex.org/W3165580226","https://openalex.org/W3144173820","https://openalex.org/W2795079307","https://openalex.org/W2576964996","https://openalex.org/W2062195135"],"abstract_inverted_index":{"The":[0],"success":[1],"of":[2,13,37,69,146],"self-supervised":[3,70],"learning":[4,71,108],"(SSL)":[5],"has":[6],"mostly":[7],"been":[8],"attributed":[9],"to":[10,65,106,122,154],"the":[11,35,45,67,134,144,151],"availability":[12,39],"unlabeled":[14],"yet":[15],"large-scale":[16,110],"datasets.":[17,77,93,161],"However,":[18],"in":[19,52],"a":[20,29,139],"specialized":[21],"domain":[22],"such":[23],"as":[24,44,113],"medical":[25,75,91,160],"imaging":[26,76,92],"which":[27],"is":[28,40,48,150],"lot":[30],"different":[31],"from":[32,109],"natural":[33],"images,":[34],"assumption":[36],"data":[38,46],"unrealistic":[41],"and":[42,50],"impractical,":[43],"itself":[47],"scanty":[49],"found":[51],"small":[53],"databases,":[54],"collected":[55],"for":[56,129,136],"specific":[57],"prognosis":[58],"tasks.":[59],"To":[60,143],"this":[61,149],"end,":[62],"we":[63,80,116],"seek":[64],"investigate":[66],"applicability":[68],"algorithms":[72],"on":[73,86,138,158],"small-scale":[74],"In":[78],"particular,":[79],"evaluate":[81],"$4$":[82],"state-of-the-art":[83],"SSL":[84,100],"methods":[85],"three":[87],"publicly":[88],"accessible":[89],"\\emph{small}":[90],"Our":[94],"investigation":[95],"reveals":[96],"that":[97,126],"in-domain":[98],"low-resource":[99,159],"pre-training":[101,137],"can":[102,127],"yield":[103],"competitive":[104],"performance":[105],"transfer":[107],"datasets":[111],"(such":[112],"ImageNet).":[114],"Furthermore,":[115],"extensively":[117],"analyse":[118],"our":[119,147],"empirical":[120],"findings":[121],"provide":[123],"valuable":[124],"insights":[125],"motivate":[128],"further":[130],"research":[131],"towards":[132],"circumventing":[133],"need":[135],"large":[140],"image":[141],"corpus.":[142],"best":[145],"knowledge,":[148],"first":[152],"attempt":[153],"holistically":[155],"explore":[156],"self-supervision":[157]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4323555784","counts_by_year":[],"updated_date":"2025-01-05T23:28:40.575225","created_date":"2023-03-09"}