{"id":"https://openalex.org/W4323066432","doi":"https://doi.org/10.48550/arxiv.2303.00815","title":"Soft Prompt Guided Joint Learning for Cross-Domain Sentiment Analysis","display_name":"Soft Prompt Guided Joint Learning for Cross-Domain Sentiment Analysis","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4323066432","doi":"https://doi.org/10.48550/arxiv.2303.00815"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.00815","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.00815","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100298294","display_name":"Jingli Shi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Jingli","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100400672","display_name":"Weihua Li","orcid":"https://orcid.org/0000-0002-9060-382X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Weihua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029548157","display_name":"Quan Bai","orcid":"https://orcid.org/0000-0003-1214-6317"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bai, Quan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005421447","display_name":"Yi Yang","orcid":"https://orcid.org/0000-0002-0512-880X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Yi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5028333907","display_name":"Jianhua Jiang","orcid":"https://orcid.org/0000-0002-9149-2922"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Jianhua","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.787004,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":68,"max":79},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9844,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.973,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.64058733},{"id":"https://openalex.org/keywords/aspect-based-sentiment-analysis","display_name":"Aspect-based Sentiment Analysis","score":0.636086},{"id":"https://openalex.org/keywords/emotion-recognition","display_name":"Emotion Recognition","score":0.550776},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.539797},{"id":"https://openalex.org/keywords/extraction","display_name":"Extraction","score":0.503676},{"id":"https://openalex.org/keywords/feature-selection","display_name":"Feature Selection","score":0.501559},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.45453152}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8086808},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.64058733},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.5927638},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59069896},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.5460373},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.54503006},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.52827793},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.51157147},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.50964737},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.46747208},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.45453152},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45047602},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.07426965},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.071685135},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.00815","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.00815","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.00815","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.6,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388145910","https://openalex.org/W4321353415","https://openalex.org/W4248336175","https://openalex.org/W3089396779","https://openalex.org/W2745001401","https://openalex.org/W2381570729","https://openalex.org/W2378211422","https://openalex.org/W2366107444","https://openalex.org/W2031260042","https://openalex.org/W1976205134"],"abstract_inverted_index":{"Aspect":[0],"term":[1,50,93,111],"extraction":[2,112],"is":[3,83],"a":[4,101,153],"fundamental":[5],"task":[6,46],"in":[7,113,171],"fine-grained":[8],"sentiment":[9],"analysis,":[10],"which":[11,82,136],"aims":[12],"at":[13],"detecting":[14],"customer's":[15],"opinion":[16],"targets":[17],"from":[18],"reviews":[19],"on":[20,77,178],"product":[21],"or":[22,75],"service.":[23],"The":[24],"traditional":[25],"supervised":[26],"models":[27],"can":[28],"achieve":[29],"promising":[30],"results":[31,185],"with":[32,142],"annotated":[33],"datasets,":[34],"however,":[35],"the":[36,45,78,87,97,122,138,149,179,183,187,190],"performance":[37],"dramatically":[38],"decreases":[39],"when":[40],"they":[41],"are":[42,165,176],"applied":[43],"to":[44,68,72,85,167],"of":[47,145,155,160,189],"cross-domain":[48,53,194],"aspect":[49,92,110,146,169,195],"extraction.":[51,197],"Existing":[52],"transfer":[54,69],"learning":[55,105],"methods":[56],"either":[57],"directly":[58],"inject":[59],"linguistic":[60,70,120],"features":[61],"into":[62],"Language":[63],"models,":[64],"making":[65],"it":[66],"difficult":[67],"knowledge":[71],"target":[73,131,172],"domain,":[74],"rely":[76],"fixed":[79],"predefined":[80],"prompts,":[81],"time-consuming":[84],"construct":[86],"prompts":[88,158],"over":[89],"all":[90],"potential":[91],"spans.":[94],"To":[95],"resolve":[96],"limitations,":[98],"we":[99],"propose":[100],"soft":[102,157],"prompt-based":[103],"joint":[104],"method":[106,124,151,192],"for":[107,193],"cross":[108],"domain":[109],"this":[114],"paper.":[115],"Specifically,":[116],"by":[117],"incorporating":[118],"external":[119],"features,":[121],"proposed":[123,150,191],"learn":[125],"domain-invariant":[126],"representations":[127],"between":[128,140],"source":[129],"and":[130,182],"domains":[132,141],"via":[133],"multiple":[134,161],"objectives,":[135],"bridges":[137],"gap":[139],"varied":[143],"distributions":[144],"terms.":[147],"Further,":[148],"interpolates":[152],"set":[154],"transferable":[156],"consisted":[159],"learnable":[162],"vectors":[163],"that":[164],"beneficial":[166],"detect":[168],"terms":[170,196],"domain.":[173],"Extensive":[174],"experiments":[175],"conducted":[177],"benchmark":[180],"datasets":[181],"experimental":[184],"demonstrate":[186],"effectiveness":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4323066432","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-05T07:49:27.918582","created_date":"2023-03-05"}