{"id":"https://openalex.org/W4322831933","doi":"https://doi.org/10.48550/arxiv.2303.00154","title":"Neural inverse procedural modeling of knitting yarns from images","display_name":"Neural inverse procedural modeling of knitting yarns from images","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4322831933","doi":"https://doi.org/10.48550/arxiv.2303.00154"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.00154","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2303.00154","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025953171","display_name":"Elena Trunz","orcid":"https://orcid.org/0000-0002-4037-7369"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Trunz, Elena","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102828218","display_name":"Jonathan Klein","orcid":"https://orcid.org/0009-0005-1041-6477"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Klein, Jonathan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027099621","display_name":"Jan M\u00fcller","orcid":"https://orcid.org/0000-0002-7530-2025"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"M\u00fcller, Jan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012907080","display_name":"Lukas Bode","orcid":"https://orcid.org/0000-0002-8710-8561"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bode, Lukas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067017103","display_name":"Ralf Sarlette","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sarlette, Ralf","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017002784","display_name":"Michael Weinmann","orcid":"https://orcid.org/0000-0003-3634-0093"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Weinmann, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5037976392","display_name":"Reinhard Klein","orcid":"https://orcid.org/0000-0002-5505-9347"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Klein, Reinhard","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11595","display_name":"Textile materials and evaluations","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2507","display_name":"Polymers and Plastics"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11595","display_name":"Textile materials and evaluations","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2507","display_name":"Polymers and Plastics"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9875,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10638","display_name":"Optical measurement and interference techniques","score":0.9196,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.46146873},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.43587527},{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.41493613}],"concepts":[{"id":"https://openalex.org/C2778787235","wikidata":"https://www.wikidata.org/wiki/Q49007","display_name":"Yarn","level":2,"score":0.7876913},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.668512},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6156774},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5745132},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.56734985},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.5569357},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.46146873},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.43587527},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.43379804},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.422315},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.41762286},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.41493613},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39486754},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33554858},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24089628},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.09075487},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.090531915},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.00154","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2303.00154","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.00154","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.62,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388067754","https://openalex.org/W4225274307","https://openalex.org/W4200164335","https://openalex.org/W3182611934","https://openalex.org/W3035069238","https://openalex.org/W2514264328","https://openalex.org/W2392493391","https://openalex.org/W2381070915","https://openalex.org/W2352481835","https://openalex.org/W2078851640"],"abstract_inverted_index":{"We":[0,80,155],"investigate":[1],"the":[2,31,49,62,82,94,111,115,141,149,153,158,193,217,222,231,246,249],"capabilities":[3],"of":[4,21,30,51,56,61,71,73,84,96,110,137,145,152,160,195,207,219,225,248],"neural":[5,39],"inverse":[6],"procedural":[7,12,165],"modeling":[8],"to":[9,92,99,106,120,130,216],"infer":[10],"high-quality":[11],"yarn":[13,23,33,52,166,197,226,233,242],"models":[14],"with":[15,168,199,228],"fiber-level":[16],"details":[17],"from":[18],"single":[19,38],"images":[20,122,139,147,227],"depicted":[22],"samples.":[24],"While":[25],"directly":[26],"inferring":[27],"all":[28],"parameters":[29,98,117],"underlying":[32],"model":[34,167],"based":[35],"on":[36,77,185,192],"a":[37,89,103,161,196,209,240],"network":[40,170],"may":[41],"seem":[42],"an":[43,126],"intuitive":[44],"choice,":[45],"we":[46,203,213,238],"show":[47],"that":[48,75,157,244],"complexity":[50],"structures":[53],"in":[54,69,118,148],"terms":[55,70],"twisting":[57],"and":[58,140,202],"migration":[59],"characteristics":[60],"involved":[63],"fibers":[64],"can":[65],"be":[66],"better":[67],"encountered":[68],"ensembles":[72,171],"networks":[74],"focus":[76],"individual":[78],"characteristics.":[79],"analyze":[81],"effect":[83],"different":[85],"loss":[86,91,105,175],"functions":[87,176],"including":[88],"parameter":[90,180,200],"penalize":[93,132],"deviation":[95],"inferred":[97],"ground":[100],"truth":[101],"annotations,":[102],"reconstruction":[104],"enforce":[107],"similar":[108],"statistics":[109],"image":[112],"generated":[113],"for":[114],"estimated":[116],"comparison":[119],"training":[121],"as":[123,125,172,174],"well":[124,173],"additional":[127],"regularization":[128],"term":[129],"explicitly":[131],"deviations":[133],"between":[134],"latent":[135,143,150],"codes":[136],"synthetic":[138,186],"average":[142],"code":[144],"real":[146],"space":[151],"encoder.":[154],"demonstrate":[156],"combination":[159],"carefully":[162],"designed":[163],"parametric,":[164],"respective":[169,232],"even":[177],"allows":[178],"robust":[179],"inference":[181],"when":[182],"solely":[183],"trained":[184],"data.":[187],"Since":[188],"our":[189,220],"approach":[190],"relies":[191],"availability":[194],"database":[198],"annotations":[201,229],"are":[204],"not":[205],"aware":[206],"such":[208],"respectively":[210],"available":[211],"dataset,":[212],"additionally":[214],"provide,":[215],"best":[218],"knowledge,":[221],"first":[223],"dataset":[224],"regarding":[230],"parameters.":[234],"For":[235],"this":[236],"purpose,":[237],"use":[239],"novel":[241],"generator":[243],"improves":[245],"realism":[247],"produced":[250],"results":[251],"over":[252],"previous":[253],"approaches.":[254]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4322831933","counts_by_year":[],"updated_date":"2025-01-05T15:40:31.487649","created_date":"2023-03-03"}