{"id":"https://openalex.org/W4322759481","doi":"https://doi.org/10.48550/arxiv.2302.14124","title":"Multimodal Deep Learning to Differentiate Tumor Recurrence from Treatment Effect in Human Glioblastoma","display_name":"Multimodal Deep Learning to Differentiate Tumor Recurrence from Treatment Effect in Human Glioblastoma","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4322759481","doi":"https://doi.org/10.48550/arxiv.2302.14124"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.14124","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.14124","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004615608","display_name":"Tonmoy Hossain","orcid":"https://orcid.org/0000-0002-5808-6391"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hossain, Tonmoy","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045506720","display_name":"Zoraiz Qureshi","orcid":"https://orcid.org/0000-0003-3905-5490"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qureshi, Zoraiz","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032633889","display_name":"Nivetha Jayakumar","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jayakumar, Nivetha","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077367904","display_name":"Thomas Eluvathingal Muttikkal","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Muttikkal, Thomas Eluvathingal","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052840906","display_name":"Sohil H. Patel","orcid":"https://orcid.org/0000-0002-9739-4362"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Patel, Sohil","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023905352","display_name":"David Schiff","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Schiff, David","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100357903","display_name":"Miaomiao Zhang","orcid":"https://orcid.org/0000-0002-4468-4497"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Miaomiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5035655436","display_name":"Bijoy Kundu","orcid":"https://orcid.org/0000-0003-2683-9165"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kundu, Bijoy","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10129","display_name":"Glioma Diagnosis and Treatment","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2716","display_name":"Genetics"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/statistical-parametric-mapping","display_name":"Statistical parametric mapping","score":0.41232795}],"concepts":[{"id":"https://openalex.org/C54170458","wikidata":"https://www.wikidata.org/wiki/Q663554","display_name":"Voxel","level":2,"score":0.9278946},{"id":"https://openalex.org/C2776194525","wikidata":"https://www.wikidata.org/wiki/Q282142","display_name":"Glioblastoma","level":2,"score":0.5874169},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5516403},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5208248},{"id":"https://openalex.org/C2989005","wikidata":"https://www.wikidata.org/wiki/Q214963","display_name":"Nuclear medicine","level":1,"score":0.50603455},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50222206},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.4548784},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.44829726},{"id":"https://openalex.org/C39313694","wikidata":"https://www.wikidata.org/wiki/Q2940624","display_name":"Statistical parametric mapping","level":3,"score":0.41232795},{"id":"https://openalex.org/C143409427","wikidata":"https://www.wikidata.org/wiki/Q161238","display_name":"Magnetic resonance imaging","level":2,"score":0.37034303},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34196097},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.33524418},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.29083294},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17568067},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C502942594","wikidata":"https://www.wikidata.org/wiki/Q3421914","display_name":"Cancer research","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.14124","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.14124","pdf_url":"http://arxiv.org/pdf/2302.14124","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.14124","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.14124","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3","score":0.72}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4312417841","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W2951211570","https://openalex.org/W2119508653","https://openalex.org/W1977508323"],"abstract_inverted_index":{"Differentiating":[0],"tumor":[1,106],"progression":[2],"(TP)":[3],"from":[4,23,81],"treatment-related":[5],"necrosis":[6],"(TN)":[7],"is":[8],"critical":[9],"for":[10,46,77,112,125],"clinical":[11,32],"management":[12],"decisions":[13],"in":[14,31,84,179,187,192],"glioblastoma":[15],"(GBM).":[16],"Dynamic":[17],"FDG":[18,26],"PET":[19,91,97],"(dPET),":[20],"an":[21],"advance":[22],"traditional":[24,95],"static":[25,96],"PET,":[27],"may":[28],"prove":[29],"advantageous":[30],"staging.":[33],"dPET":[34,172],"includes":[35],"novel":[36],"methods":[37],"of":[38],"a":[39,59,62],"model-corrected":[40],"blood":[41],"input":[42,111],"function":[43],"that":[44,54],"accounts":[45],"partial":[47],"volume":[48],"averaging":[49],"to":[50,69,155,169],"compute":[51],"parametric":[52,90],"maps":[53],"reveal":[55],"kinetic":[56],"information.":[57],"In":[58],"preliminary":[60],"study,":[61],"convolution":[63],"neural":[64],"network":[65],"(CNN)":[66],"was":[67,128],"trained":[68],"predict":[70],"classification":[71],"accuracy":[72,118,154,168,186],"between":[73],"TP":[74,189],"and":[75,102,139,148,162],"TN":[76,191],"$35$":[78],"brain":[79,105],"tumors":[80],"$26$":[82],"subjects":[83],"the":[85,104,110,113,132,137,143,152,158,166],"PET-MR":[86],"image":[87],"space.":[88],"3D":[89],"Ki":[92,144,163],"(from":[93],"dPET),":[94],"standardized":[98],"uptake":[99],"values":[100],"(SUV),":[101],"also":[103],"MR":[107,149,161,177],"voxels":[108,150,164],"formed":[109],"CNN.":[114],"The":[115],"average":[116],"test":[117,153,167],"across":[119],"all":[120],"leave-one-out":[121],"cross-validation":[122],"iterations":[123],"adjusting":[124],"class":[126],"weights":[127],"$0.56$":[129],"using":[130,135,141],"only":[131,136,142],"MR,":[133],"$0.65$":[134],"SUV,":[138],"$0.71$":[140],"voxels.":[145],"Combining":[146],"SUV":[147],"increased":[151,165],"$0.62$.":[156],"On":[157],"other":[159],"hand,":[160],"$0.74$.":[170],"Thus,":[171],"features":[173,178],"alone":[174],"or":[175],"with":[176],"deep":[180],"learning":[181],"models":[182],"would":[183],"enhance":[184],"prediction":[185],"differentiating":[188],"vs":[190],"GBM.":[193]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4322759481","counts_by_year":[],"updated_date":"2025-01-03T06:00:54.666620","created_date":"2023-03-03"}