{"id":"https://openalex.org/W4322718223","doi":"https://doi.org/10.48550/arxiv.2302.14040","title":"Permutation Equivariant Neural Functionals","display_name":"Permutation Equivariant Neural Functionals","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4322718223","doi":"https://doi.org/10.48550/arxiv.2302.14040"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.14040","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.14040","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5063400595","display_name":"Allan Zhou","orcid":"https://orcid.org/0000-0001-9448-8075"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Allan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074724001","display_name":"Kaien Yang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Kaien","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074014720","display_name":"Kaylee Burns","orcid":"https://orcid.org/0000-0001-5713-2774"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Burns, Kaylee","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011289358","display_name":"Yiding Jiang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Yiding","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059261578","display_name":"Samuel Sokota","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sokota, Samuel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011707683","display_name":"J. Zico Kolter","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kolter, J. Zico","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5005431772","display_name":"Chelsea Finn","orcid":"https://orcid.org/0000-0001-6298-0874"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Finn, Chelsea","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.778623,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":68,"max":79},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9889,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/equivariant-map","display_name":"Equivariant map","score":0.69650006}],"concepts":[{"id":"https://openalex.org/C171036898","wikidata":"https://www.wikidata.org/wiki/Q256355","display_name":"Equivariant map","level":2,"score":0.69650006},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.69375646},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67620367},{"id":"https://openalex.org/C21308566","wikidata":"https://www.wikidata.org/wiki/Q7169365","display_name":"Permutation (music)","level":2,"score":0.60313064},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.46373975},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.44929755},{"id":"https://openalex.org/C96469262","wikidata":"https://www.wikidata.org/wiki/Q1324364","display_name":"Homogeneous space","level":2,"score":0.42326084},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4015675},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33288747},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20272449},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C24890656","wikidata":"https://www.wikidata.org/wiki/Q82811","display_name":"Acoustics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.14040","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.14040","pdf_url":"http://arxiv.org/pdf/2302.14040","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.14040","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.14040","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3211835374","https://openalex.org/W3169304289","https://openalex.org/W3148895720","https://openalex.org/W30258475","https://openalex.org/W2736697936","https://openalex.org/W2548611373","https://openalex.org/W2393913406","https://openalex.org/W2356579025","https://openalex.org/W2069360731","https://openalex.org/W1601809778"],"abstract_inverted_index":{"This":[0],"work":[1],"studies":[2],"the":[3,11,58,65,71,80,86,165],"design":[4,66],"of":[5,15,32,60,67,73,88,123,160,167],"neural":[6,17,24,40,68,108,152,188],"networks":[7,26,91],"that":[8,56,83,131,149,162],"can":[9],"process":[10,57],"weights":[12,59,87,166],"or":[13,185],"gradients":[14],"other":[16,61],"networks,":[18],"which":[19],"we":[20,132,147,193],"refer":[21],"to":[22,134],"as":[23,115,172],"functional":[25,129],"(NFNs).":[27],"Despite":[28],"a":[29,102,157],"wide":[30],"range":[31],"potential":[33],"applications,":[34],"including":[35],"learned":[36],"optimization,":[37],"processing":[38,164],"implicit":[39,187],"representations,":[41],"network":[42],"editing,":[43],"and":[44,169,183,199],"policy":[45],"evaluation,":[46],"there":[47],"are":[48,126,154],"few":[49],"unifying":[50],"principles":[51],"for":[52,104,181,196],"designing":[53],"effective":[54,155],"architectures":[55,111],"networks.":[62],"We":[63,100],"approach":[64],"functionals":[69,153],"through":[70,138],"lens":[72],"symmetry,":[74],"in":[75,85],"particular":[76],"by":[77],"focusing":[78],"on":[79,156],"permutation":[81,106,136,150],"symmetries":[82,114],"arise":[84],"deep":[89],"feedforward":[90],"because":[92],"hidden":[93],"layer":[94],"neurons":[95],"have":[96],"no":[97],"inherent":[98],"order.":[99],"introduce":[101],"framework":[103,125],"building":[105,121],"equivariant":[107,137,151],"functionals,":[109],"whose":[110],"encode":[112],"these":[113],"an":[116,139],"inductive":[117],"bias.":[118],"The":[119],"key":[120],"blocks":[122],"this":[124],"NF-Layers":[127],"(neural":[128],"layers)":[130],"constrain":[133],"be":[135],"appropriate":[140],"parameter":[141],"sharing":[142],"scheme.":[143],"In":[144,191],"our":[145,197],"experiments,":[146],"find":[148],"diverse":[158],"set":[159],"tasks":[161],"require":[163],"MLPs":[168],"CNNs,":[170],"such":[171],"predicting":[173],"classifier":[174],"generalization,":[175],"producing":[176],"\"winning":[177],"ticket\"":[178],"sparsity":[179],"masks":[180],"initializations,":[182],"classifying":[184],"editing":[186],"representations":[189],"(INRs).":[190],"addition,":[192],"provide":[194],"code":[195],"models":[198],"experiments":[200],"at":[201],"https://github.com/AllanYangZhou/nfn.":[202]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4322718223","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-12-17T09:14:09.584221","created_date":"2023-03-03"}