{"id":"https://openalex.org/W4322716440","doi":"https://doi.org/10.48550/arxiv.2302.13005","title":"Accurate Gaussian-Process-based Distance Fields with applications to Echolocation and Mapping","display_name":"Accurate Gaussian-Process-based Distance Fields with applications to Echolocation and Mapping","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4322716440","doi":"https://doi.org/10.48550/arxiv.2302.13005"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.13005","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.13005","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054326889","display_name":"C\u00e9dric Le Gentil","orcid":"https://orcid.org/0000-0002-9790-5935"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gentil, Cedric Le","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077644426","display_name":"Othmane-Latif Ouabi","orcid":"https://orcid.org/0000-0002-8612-8296"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ouabi, Othmane-Latif","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001158778","display_name":"Lan Wu","orcid":"https://orcid.org/0000-0003-1681-0625"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Lan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045309524","display_name":"C\u00e9dric Pradalier","orcid":"https://orcid.org/0000-0002-1746-2733"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pradalier, Cedric","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5086794522","display_name":"Teresa Vidal\u2010Calleja","orcid":"https://orcid.org/0000-0002-5763-9644"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Vidal-Calleja, Teresa","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12537","display_name":"Flow Measurement and Analysis","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/2211","display_name":"Mechanics of Materials"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12537","display_name":"Flow Measurement and Analysis","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/2211","display_name":"Mechanics of Materials"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9821,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.59871185},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.57274866},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.4793816},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4579628},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42069837},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.28552192},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.10162696},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.13005","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.13005","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.13005","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.85,"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W4389574804","https://openalex.org/W3016928466","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2073681303","https://openalex.org/W2051487156","https://openalex.org/W2001405890"],"abstract_inverted_index":{"This":[0,104],"paper":[1,105],"introduces":[2],"a":[3,43,73,85,100,117,177],"novel":[4,118,147],"method":[5,68,113],"to":[6,89,196],"estimate":[7],"distance":[8,22,40,53,81,123,131,153,174],"fields":[9,132],"from":[10,54],"noisy":[11],"point":[12,29,57],"clouds":[13],"using":[14,84],"Gaussian":[15],"Process":[16],"(GP)":[17],"regression.":[18],"Distance":[19],"fields,":[20],"or":[21],"functions,":[23],"gained":[24],"popularity":[25],"for":[26,121,162,182],"applications":[27,148],"like":[28],"cloud":[30],"registration,":[31],"odometry,":[32],"SLAM,":[33],"path":[34],"planning,":[35],"shape":[36],"reconstruction,":[37],"etc.":[38],"A":[39],"field":[41,77,82,95,175],"provides":[42,106],"continuous":[44],"representation":[45],"of":[46,65,72,110,140,142,185,200],"the":[47,51,59,66,70,90,107,111,122,143,172,183,186,190,198],"scene":[48],"defined":[49],"as":[50,99,114,116],"shortest":[52],"any":[55],"query":[56],"and":[58,159],"closest":[60],"surface.":[61],"The":[62,93,125,138],"key":[63],"concept":[64],"proposed":[67,112,144,173],"is":[69,133],"transformation":[71],"GP-inferred":[74],"latent":[75,94],"scalar":[76],"into":[78],"an":[79],"accurate":[80],"by":[83],"reverting":[86],"function":[87],"related":[88],"kernel":[91],"inverse.":[92],"can":[96],"be":[97],"interpreted":[98],"smooth":[101],"occupancy":[102],"map.":[103],"theoretical":[108],"derivation":[109],"well":[115],"uncertainty":[119],"proxy":[120],"estimates.":[124],"improved":[126],"performance":[127],"compared":[128],"with":[129,135,176],"existing":[130],"demonstrated":[134],"simulated":[136],"experiments.":[137],"level":[139],"accuracy":[141],"approach":[145],"enables":[146],"that":[149],"rely":[150],"on":[151],"precise":[152],"estimation:":[154],"this":[155],"work":[156],"presents":[157],"echolocation":[158],"mapping":[160],"frameworks":[161],"ultrasonic-guided":[163],"wave":[164],"sensing":[165],"in":[166,189],"metallic":[167],"structures.":[168],"These":[169],"methods":[170],"leverage":[171],"physics-based":[178],"measurement":[179],"model":[180],"accounting":[181],"propagation":[184],"ultrasonic":[187],"waves":[188],"material.":[191],"Real-world":[192],"experiments":[193],"are":[194],"conducted":[195],"demonstrate":[197],"soundness":[199],"these":[201],"frameworks.":[202]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4322716440","counts_by_year":[],"updated_date":"2025-04-08T22:50:07.311378","created_date":"2023-03-03"}