{"id":"https://openalex.org/W4321854623","doi":"https://doi.org/10.48550/arxiv.2302.11983","title":"Category-level Shape Estimation for Densely Cluttered Objects","display_name":"Category-level Shape Estimation for Densely Cluttered Objects","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4321854623","doi":"https://doi.org/10.48550/arxiv.2302.11983"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.11983","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.11983","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100773430","display_name":"Zhenyu Wu","orcid":"https://orcid.org/0000-0002-9094-4982"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Zhenyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100389366","display_name":"Ziwei Wang","orcid":"https://orcid.org/0000-0001-9225-8495"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Ziwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100460385","display_name":"Jiwen Lu","orcid":"https://orcid.org/0000-0002-6121-5529"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Jiwen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5011536717","display_name":"Haibin Yan","orcid":"https://orcid.org/0000-0003-0811-6545"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yan, Haibin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9767,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12111","display_name":"Industrial Vision Systems and Defect Detection","score":0.9767,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9647,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.936,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.46908063}],"concepts":[{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.8324965},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.79812944},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.7903096},{"id":"https://openalex.org/C132094186","wikidata":"https://www.wikidata.org/wiki/Q641585","display_name":"Clutter","level":3,"score":0.7253898},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6376211},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.58090264},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.5074889},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.46908063},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.4371246},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.41878653},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.36084288},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.29422843},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.13389677},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.10969579},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.11983","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.11983","pdf_url":"http://arxiv.org/pdf/2302.11983","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.11983","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.11983","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4394861761","https://openalex.org/W2333771223","https://openalex.org/W2130674020","https://openalex.org/W2120056845","https://openalex.org/W2114282491","https://openalex.org/W2093748878","https://openalex.org/W2035264131","https://openalex.org/W1981531423","https://openalex.org/W1925461966","https://openalex.org/W1679012645"],"abstract_inverted_index":{"Accurately":[0],"estimating":[1],"the":[2,16,21,33,47,56,76,103,106,117,124,140,145,155,159,167,172,177,190,195,202,209,214,218,227],"shape":[3,26,49,68,79,90,119,223,239],"of":[4,28,78,144,162,182],"objects":[5,34,246],"in":[6,40,102,226],"dense":[7,41],"clutters":[8,42,147],"makes":[9],"important":[10],"contribution":[11],"to":[12,24,111,131,188],"robotic":[13],"packing,":[14],"because":[15],"optimal":[17],"object":[18,48,63,101,146],"arrangement":[19],"requires":[20],"robot":[22],"planner":[23],"acquire":[25],"information":[27,109,161,198],"all":[29],"existed":[30],"objects.":[31,96],"However,":[32],"for":[35,55,93,148,222,242],"packing":[36],"are":[37,186,220],"usually":[38],"piled":[39],"with":[43,127,247],"severe":[44],"occlusion,":[45],"and":[46,66,116,166,208,213,230],"varies":[50],"significantly":[51],"across":[52],"different":[53],"instances":[54],"same":[57],"category.":[58],"They":[59],"respectively":[60],"cause":[61],"large":[62],"segmentation":[64,114,180],"errors":[65],"inaccurate":[67],"recovery":[69],"on":[70],"unseen":[71],"instances,":[72],"which":[73],"both":[74],"degrade":[75],"performance":[77],"estimation":[80,91,240],"during":[81],"deployment.":[82],"In":[83],"this":[84],"paper,":[85],"we":[86,137,153],"propose":[87],"a":[88],"category-level":[89],"method":[92,236],"densely":[94,243],"cluttered":[95,244],"Our":[97],"framework":[98],"partitions":[99],"each":[100],"clutter":[104,173,191],"via":[105],"multi-view":[107,141,163,183],"visual":[108,160],"fusion":[110],"achieve":[112],"high":[113,238],"accuracy,":[115],"instance":[118,179,196,205],"is":[120,199],"recovered":[121],"by":[122],"deforming":[123],"category":[125,211],"templates":[126],"diverse":[128],"geometric":[129],"transformations":[130],"obtain":[132],"strengthened":[133],"generalization":[134],"ability.":[135],"Specifically,":[136],"first":[138],"collect":[139],"RGB-D":[142],"images":[143,165,185],"point":[149,174,192,206],"cloud":[150,207],"reconstruction.":[151],"Then":[152],"fuse":[154],"feature":[156],"maps":[157],"representing":[158],"RGB":[164,184],"pixel":[168],"affinity":[169],"learned":[170],"from":[171,201],"cloud,":[175],"where":[176],"acquired":[178],"masks":[181],"projected":[187],"partition":[189],"cloud.":[193],"Finally,":[194],"geometry":[197],"obtained":[200],"partially":[203],"observed":[204],"corresponding":[210],"template,":[212],"deformation":[215],"parameters":[216],"regarding":[217],"template":[219],"predicted":[221],"estimation.":[224],"Experiments":[225],"simulated":[228],"environment":[229],"real":[231],"world":[232],"show":[233],"that":[234],"our":[235],"achieves":[237],"accuracy":[241],"everyday":[245],"various":[248],"shapes.":[249]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4321854623","counts_by_year":[],"updated_date":"2025-04-11T18:08:22.521150","created_date":"2023-02-25"}