{"id":"https://openalex.org/W4321854591","doi":"https://doi.org/10.48550/arxiv.2302.11974","title":"LightCTS: A Lightweight Framework for Correlated Time Series Forecasting","display_name":"LightCTS: A Lightweight Framework for Correlated Time Series Forecasting","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4321854591","doi":"https://doi.org/10.48550/arxiv.2302.11974"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.11974","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.11974","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016538545","display_name":"Zhichen Lai","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lai, Zhichen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101753289","display_name":"Dalin Zhang","orcid":"https://orcid.org/0000-0002-5869-6544"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Dalin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100319239","display_name":"Huan Li","orcid":"https://orcid.org/0009-0009-7350-5361"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Huan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029380368","display_name":"Christian S. Jensen","orcid":"https://orcid.org/0000-0002-9697-7670"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jensen, Christian S.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079711114","display_name":"Hua Lu","orcid":"https://orcid.org/0000-0003-1199-6678"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Hua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5050699488","display_name":"Yan Zhao","orcid":"https://orcid.org/0000-0002-1234-4455"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Yan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[{"id":"https://openalex.org/I107707843","display_name":"Roskilde University","ror":"https://ror.org/014axpa37","country_code":"DK","type":"education","lineage":["https://openalex.org/I107707843"]},{"id":"https://openalex.org/I891191580","display_name":"Aalborg University","ror":"https://ror.org/04m5j1k67","country_code":"DK","type":"funder","lineage":["https://openalex.org/I891191580"]}],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9906,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.76231486},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4609277}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.810658},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.76231486},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.61510205},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.47950703},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4609277},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45733222},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.4312223},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.353787},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.3324808},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.24518737},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.11974","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.11974","pdf_url":"http://arxiv.org/pdf/2302.11974","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.11974","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.11974","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W2951187577","https://openalex.org/W2782226720","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2086519370","https://openalex.org/W2048582679","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Correlated":[0],"time":[1],"series":[2],"(CTS)":[3],"forecasting":[4,85,171],"plays":[5],"an":[6],"essential":[7],"role":[8],"in":[9],"many":[10],"practical":[11],"applications,":[12],"such":[13],"as":[14],"traffic":[15],"management":[16],"and":[17,42,87,112,130,136,161,169,187],"server":[18],"load":[19],"control.":[20],"Many":[21],"deep":[22],"learning":[23],"models":[24,37,64,86],"have":[25,38],"been":[26],"proposed":[27],"to":[28,47,58,71,156],"improve":[29,48],"the":[30,103],"accuracy":[31,67,182],"of":[32,110,116,179],"CTS":[33,84,96],"forecasting.":[34,97],"However,":[35],"while":[36,68],"become":[39],"increasingly":[40],"complex":[41],"computationally":[43,123],"intensive,":[44],"they":[45],"struggle":[46],"accuracy.":[49],"Pursuing":[50],"a":[51,152],"different":[52],"direction,":[53],"this":[54,79,99],"study":[55],"aims":[56],"instead":[57,115],"enable":[59],"much":[60,121,184],"more":[61,122],"efficient,":[62],"lightweight":[63,95],"that":[65,91,106,119,138,175],"preserve":[66],"being":[69],"able":[70],"be":[72],"deployed":[73],"on":[74],"resource-constrained":[75],"devices.":[76],"To":[77],"achieve":[78],"goal,":[80],"we":[81,101],"characterize":[82],"popular":[83],"yield":[88],"two":[89],"observations":[90],"indicate":[92],"directions":[93],"for":[94],"On":[98],"basis,":[100],"propose":[102],"LightCTS":[104,126,149,176],"framework":[105],"adopts":[107],"plain":[108],"stacking":[109,118],"temporal":[111,129,159],"spatial":[113,131],"operators":[114],"alternate":[117],"is":[120,177],"expensive.":[124],"Moreover,":[125],"features":[127,160],"light":[128],"operator":[132],"modules,":[133],"called":[134],"L-TCN":[135],"GL-Former,":[137],"offer":[139],"improved":[140],"computational":[141,186],"efficiency":[142],"without":[143],"compromising":[144],"their":[145],"feature":[146],"extraction":[147],"capabilities.":[148],"also":[150],"encompasses":[151],"last-shot":[153],"compression":[154],"scheme":[155],"reduce":[157],"redundant":[158],"speed":[162],"up":[163],"subsequent":[164],"computations.":[165],"Experiments":[166],"with":[167],"single-step":[168],"multi-step":[170],"benchmark":[172],"datasets":[173],"show":[174],"capable":[178],"nearly":[180],"state-of-the-art":[181],"at":[183],"reduced":[185],"storage":[188],"overheads.":[189]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4321854591","counts_by_year":[],"updated_date":"2025-04-14T12:52:27.896329","created_date":"2023-02-25"}