{"id":"https://openalex.org/W4321593613","doi":"https://doi.org/10.48550/arxiv.2302.10570","title":"Co-Driven Recognition of Semantic Consistency via the Fusion of Transformer and HowNet Sememes Knowledge","display_name":"Co-Driven Recognition of Semantic Consistency via the Fusion of Transformer and HowNet Sememes Knowledge","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4321593613","doi":"https://doi.org/10.48550/arxiv.2302.10570"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.10570","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.10570","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100322110","display_name":"Fan Chen","orcid":"https://orcid.org/0000-0003-4482-3116"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Fan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100715216","display_name":"Yan Huang","orcid":"https://orcid.org/0000-0002-7925-4841"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Yan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100679223","display_name":"Xinfang Zhang","orcid":"https://orcid.org/0000-0001-9383-5434"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Xinfang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101341259","display_name":"Kang Luo","orcid":"https://orcid.org/0009-0003-5866-0175"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luo, Kang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101534804","display_name":"Jinxuan Zhu","orcid":"https://orcid.org/0000-0002-4669-3362"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Jinxuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5114050188","display_name":"Ruixian He","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Ruixian","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9742,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9653,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/paraphrase","display_name":"Paraphrase","score":0.46718505},{"id":"https://openalex.org/keywords/polysemy","display_name":"Polysemy","score":0.42125955}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7697705},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.6205284},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.61253285},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.59944916},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.5762835},{"id":"https://openalex.org/C197914299","wikidata":"https://www.wikidata.org/wiki/Q18650","display_name":"Semantic memory","level":3,"score":0.5520749},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54122293},{"id":"https://openalex.org/C2780922921","wikidata":"https://www.wikidata.org/wiki/Q255189","display_name":"Paraphrase","level":2,"score":0.46718505},{"id":"https://openalex.org/C2780276568","wikidata":"https://www.wikidata.org/wiki/Q191928","display_name":"Polysemy","level":2,"score":0.42125955},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.37665135},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C169900460","wikidata":"https://www.wikidata.org/wiki/Q2200417","display_name":"Cognition","level":2,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.10570","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.10570","pdf_url":"http://arxiv.org/pdf/2302.10570","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.10570","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.10570","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.51,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4321512656","https://openalex.org/W4281476908","https://openalex.org/W4206666510","https://openalex.org/W3175194702","https://openalex.org/W3120390996","https://openalex.org/W2782520308","https://openalex.org/W2376040010","https://openalex.org/W2251069562","https://openalex.org/W2018298289","https://openalex.org/W191017350"],"abstract_inverted_index":{"Semantic":[0],"consistency":[1,48,174],"recognition":[2,49,175],"aims":[3],"to":[4,33,83,117,218,220],"detect":[5],"and":[6,31,57,101,123,139,156,180,187],"judge":[7],"whether":[8],"the":[9,21,26,39,53,85,103,119,125,163,170,184,191,197,209,213],"semantics":[10],"of":[11,28,55,63,172,199],"two":[12,132],"text":[13,134],"sentences":[14],"are":[15,129],"consistent":[16],"with":[17,105,149,183,222],"each":[18],"other.":[19],"However,":[20],"existing":[22],"methods":[23],"usually":[24],"encounter":[25],"challenges":[27],"synonyms,":[29],"polysemy":[30],"difficulty":[32],"understand":[34],"long":[35,110,223],"text.":[36,224],"To":[37],"solve":[38],"above":[40],"problems,":[41],"this":[42],"paper":[43],"proposes":[44],"a":[45,140],"co-driven":[46],"semantic":[47,86,121,126,173],"method":[50,215],"based":[51],"on":[52,131,190],"fusion":[54,102],"Transformer":[56],"HowNet":[58,78,210],"sememes":[59,75,106,211],"knowledge.":[60],"Multi-level":[61],"encoding":[62],"internal":[64],"sentence":[65,90],"structures":[66],"via":[67],"data-driven":[68],"is":[69,79,96,115,216],"carried":[70,97],"out":[71,98],"firstly":[72],"by":[73,208],"Transformer,":[74],"knowledge":[76,87,104],"base":[77],"introduced":[80],"for":[81,145],"knowledge-driven":[82],"model":[84,165,200],"association":[88],"among":[89],"pairs.":[91],"Then,":[92],"interactive":[93],"attention":[94],"calculation":[95],"utilizing":[99],"soft-attention":[100],"matrix.":[107],"Finally,":[108],"bidirectional":[109],"short-term":[111],"memory":[112],"network":[113],"(BiLSTM)":[114],"exploited":[116],"encode":[118],"conceptual":[120],"information":[122],"infer":[124],"consistency.":[127],"Experiments":[128],"conducted":[130],"financial":[133],"matching":[135],"datasets":[136],"(BQ,":[137],"AFQMC)":[138],"cross-lingual":[141],"adversarial":[142],"dataset":[143],"(PAWSX)":[144],"paraphrase":[146],"identification.":[147],"Compared":[148],"lightweight":[150],"models":[151,158,189],"including":[152],"DSSM,":[153,185],"MwAN,":[154],"DRCN,":[155],"pre-training":[157],"such":[159],"as":[160],"ERNIE":[161],"etc.,":[162],"proposed":[164,214],"can":[166],"not":[167],"only":[168],"improve":[169],"accuracy":[171],"effectively":[176],"(by":[177],"2.19%,":[178],"5.57%":[179],"6.51%":[181],"compared":[182],"MWAN":[186],"DRCN":[188],"BQ":[192],"dataset),":[193],"but":[194],"also":[195],"reduce":[196],"number":[198],"parameters":[201],"(to":[202],"about":[203],"16M).":[204],"In":[205],"addition,":[206],"driven":[207],"knowledge,":[212],"promising":[217],"adapt":[219],"scenarios":[221]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4321593613","counts_by_year":[],"updated_date":"2025-01-04T17:33:27.074696","created_date":"2023-02-24"}