{"id":"https://openalex.org/W4320854709","doi":"https://doi.org/10.48550/arxiv.2302.06375","title":"One Transformer for All Time Series: Representing and Training with Time-Dependent Heterogeneous Tabular Data","display_name":"One Transformer for All Time Series: Representing and Training with Time-Dependent Heterogeneous Tabular Data","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4320854709","doi":"https://doi.org/10.48550/arxiv.2302.06375"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.06375","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.06375","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5011426296","display_name":"Simone Luetto","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luetto, Simone","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066213235","display_name":"Fabrizio Garuti","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Garuti, Fabrizio","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024183744","display_name":"Enver Sangineto","orcid":"https://orcid.org/0000-0002-5187-4133"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sangineto, Enver","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009880734","display_name":"Lorenzo Forni","orcid":"https://orcid.org/0000-0002-2237-122X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Forni, Lorenzo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5030948871","display_name":"Rita Cucchiara","orcid":"https://orcid.org/0000-0002-2239-283X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cucchiara, Rita","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.763771,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9916,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9916,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9908,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9598,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/categorical-variable","display_name":"Categorical variable","score":0.67316544},{"id":"https://openalex.org/keywords/replicate","display_name":"Replicate","score":0.66073203},{"id":"https://openalex.org/keywords/domain-adaptation","display_name":"Domain Adaptation","score":0.65586185},{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.42854866}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6969827},{"id":"https://openalex.org/C5274069","wikidata":"https://www.wikidata.org/wiki/Q2285707","display_name":"Categorical variable","level":2,"score":0.67316544},{"id":"https://openalex.org/C2781162219","wikidata":"https://www.wikidata.org/wiki/Q26250693","display_name":"Replicate","level":2,"score":0.66073203},{"id":"https://openalex.org/C2776434776","wikidata":"https://www.wikidata.org/wiki/Q19246213","display_name":"Domain adaptation","level":3,"score":0.65586185},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.5918352},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.5495615},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4847493},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.46884978},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.42854866},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.40847653},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12988752},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12780976},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.073908865},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.06375","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.06375","pdf_url":"http://arxiv.org/pdf/2302.06375","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.06375","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.06375","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4394550905","https://openalex.org/W4254851101","https://openalex.org/W3171007296","https://openalex.org/W2981861370","https://openalex.org/W2952773340","https://openalex.org/W2470062578","https://openalex.org/W2321234655","https://openalex.org/W2211931904","https://openalex.org/W22115721","https://openalex.org/W2065444835"],"abstract_inverted_index":{"There":[0],"is":[1,31,98],"a":[2,39,73,89,102],"recent":[3],"growing":[4],"interest":[5],"in":[6,14,25,34,55,82],"applying":[7],"Deep":[8],"Learning":[9],"techniques":[10],"to":[11,16,76],"tabular":[12,36,53,80],"data,":[13,81],"order":[15],"replicate":[17],"the":[18,32,49,52,95],"success":[19],"of":[20,51,91],"other":[21],"Artificial":[22],"Intelligence":[23],"areas":[24],"this":[26,65,69],"structured":[27],"domain.":[28],"Specifically":[29],"interesting":[30],"case":[33],"which":[35,56,83],"data":[37],"have":[38],"time":[40],"dependence,":[41],"such":[42],"as,":[43],"for":[44],"instance":[45],"financial":[46],"transactions.":[47],"However,":[48],"heterogeneity":[50],"values,":[54],"categorical":[57],"elements":[58],"are":[59,86],"mixed":[60],"with":[61,101],"numerical":[62,84],"items,":[63],"makes":[64],"adaptation":[66],"difficult.":[67],"In":[68],"paper":[70],"we":[71],"propose":[72],"Transformer":[74],"architecture":[75],"represent":[77],"heterogeneous":[78],"time-dependent":[79],"features":[85],"represented":[87],"using":[88],"set":[90],"frequency":[92],"functions":[93],"and":[94],"whole":[96],"network":[97],"uniformly":[99],"trained":[100],"unique":[103],"loss":[104],"function.":[105]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4320854709","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2025-04-16T09:34:46.382479","created_date":"2023-02-16"}