{"id":"https://openalex.org/W4320342485","doi":"https://doi.org/10.48550/arxiv.2302.04460","title":"Bag of Tricks for Training Data Extraction from Language Models","display_name":"Bag of Tricks for Training Data Extraction from Language Models","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4320342485","doi":"https://doi.org/10.48550/arxiv.2302.04460"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.04460","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.04460","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5108259382","display_name":"Weichen Yu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Weichen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031863731","display_name":"Tianyu Pang","orcid":"https://orcid.org/0000-0003-0639-6176"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pang, Tianyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037327117","display_name":"Qian Liu","orcid":"https://orcid.org/0000-0002-3162-935X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Qian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100735333","display_name":"Chao\u2010Hai Du","orcid":"https://orcid.org/0000-0001-7970-9204"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Du, Chao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032599820","display_name":"Bingyi Kang","orcid":"https://orcid.org/0000-0003-2637-4695"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kang, Bingyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100715216","display_name":"Yan Huang","orcid":"https://orcid.org/0000-0002-7925-4841"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Yan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100616299","display_name":"Min Lin","orcid":"https://orcid.org/0000-0001-7042-9601"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lin, Min","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100381753","display_name":"Shuicheng Yan","orcid":"https://orcid.org/0000-0001-8906-3777"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yan, Shuicheng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.710701,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":85},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9855,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9855,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9657,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12479","display_name":"Web Application Security Vulnerabilities","score":0.9575,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.6818408},{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.5291111},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5188071},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.47636032},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.46062106},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.4584098},{"id":"https://openalex.org/keywords/data-extraction","display_name":"Data extraction","score":0.4259839}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8308981},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.6818408},{"id":"https://openalex.org/C48145219","wikidata":"https://www.wikidata.org/wiki/Q1335365","display_name":"Security token","level":2,"score":0.67570025},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.66852343},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.59703374},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5747479},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.5291111},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5188071},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.47636032},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.46062106},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.4584098},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43512243},{"id":"https://openalex.org/C2777466982","wikidata":"https://www.wikidata.org/wiki/Q5227287","display_name":"Data extraction","level":3,"score":0.4259839},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.42501083},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41650227},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3534112},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.35068497},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.100421995},{"id":"https://openalex.org/C2779473830","wikidata":"https://www.wikidata.org/wiki/Q1540899","display_name":"MEDLINE","level":2,"score":0.07700667},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.04460","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.04460","pdf_url":"http://arxiv.org/pdf/2302.04460","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.04460","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.04460","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","score":0.47,"display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4372259861","https://openalex.org/W4317548404","https://openalex.org/W4309128991","https://openalex.org/W4287630611","https://openalex.org/W3094960827","https://openalex.org/W3022007134","https://openalex.org/W2130553454","https://openalex.org/W2087783760","https://openalex.org/W2001391081","https://openalex.org/W10944326"],"abstract_inverted_index":{"With":[0],"the":[1,35,42,100,128,136,145],"advance":[2],"of":[3,17,37,41,78,130],"language":[4],"models,":[5],"privacy":[6,30],"protection":[7],"is":[8,15,164],"receiving":[9],"more":[10],"attention.":[11],"Training":[12],"data":[13,63,87,132],"extraction":[14,64,73],"therefore":[16],"great":[18],"importance,":[19],"as":[20,24,84],"it":[21],"can":[22,124],"serve":[23],"a":[25,66,76,148,155],"potential":[26,85],"tool":[27],"to":[28,34,127],"assess":[29],"leakage.":[31],"However,":[32],"due":[33],"difficulty":[36],"this":[38,53],"task,":[39],"most":[40,71,152],"existing":[43,72],"methods":[44,74],"are":[45],"proof-of-concept":[46],"and":[47,57,88,109],"still":[48],"not":[49],"effective":[50],"enough.":[51],"In":[52],"paper,":[54],"we":[55],"investigate":[56],"benchmark":[58],"tricks":[59,101,123,143],"for":[60,102,159],"improving":[61],"training":[62,86,131],"using":[65],"publicly":[67],"available":[68,165],"dataset.":[69],"Because":[70],"use":[75],"pipeline":[77],"generating-then-ranking,":[79],"i.e.,":[80],"generating":[81],"text":[82,104,110],"candidates":[83],"then":[89],"ranking":[90,111],"them":[91],"based":[92],"on":[93,99,135],"specific":[94],"criteria,":[95],"our":[96,141],"research":[97],"focuses":[98],"both":[103],"generation":[105],"(e.g.,":[106,112],"sampling":[107],"strategy)":[108],"token-level":[113],"criteria).":[114],"The":[115,162],"experimental":[116],"results":[117],"show":[118],"that":[119],"several":[120],"previously":[121],"overlooked":[122],"be":[125],"crucial":[126],"success":[129],"extraction.":[133],"Based":[134],"GPT-Neo":[137],"1.3B":[138],"evaluation":[139],"results,":[140],"proposed":[142],"outperform":[144],"baseline":[146,158],"by":[147],"large":[149],"margin":[150],"in":[151],"cases,":[153],"providing":[154],"much":[156],"stronger":[157],"future":[160],"research.":[161],"code":[163],"at":[166],"https://github.com/weichen-yu/LM-Extraction.":[167]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4320342485","counts_by_year":[{"year":2023,"cited_by_count":3}],"updated_date":"2025-04-24T02:56:17.530731","created_date":"2023-02-13"}