{"id":"https://openalex.org/W4319793309","doi":"https://doi.org/10.48550/arxiv.2302.04040","title":"Sample-efficient Multi-objective Molecular Optimization with GFlowNets","display_name":"Sample-efficient Multi-objective Molecular Optimization with GFlowNets","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4319793309","doi":"https://doi.org/10.48550/arxiv.2302.04040"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.04040","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.04040","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5052610760","display_name":"Yiheng Zhu","orcid":"https://orcid.org/0000-0002-3857-1533"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Yiheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063013219","display_name":"Jialu Wu","orcid":"https://orcid.org/0000-0003-4468-956X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Jialu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010512785","display_name":"Chaowen Hu","orcid":"https://orcid.org/0000-0001-8165-314X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Chaowen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103116142","display_name":"Jiahuan Yan","orcid":"https://orcid.org/0000-0002-2002-2579"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yan, Jiahuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008663435","display_name":"Chang\u2010Yu Hsieh","orcid":"https://orcid.org/0000-0002-6242-4218"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hsieh, Chang-Yu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028525523","display_name":"Tingjun Hou","orcid":"https://orcid.org/0000-0001-7227-2580"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hou, Tingjun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100599435","display_name":"Jian Wu","orcid":"https://orcid.org/0000-0002-3394-1507"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Jian","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.999788,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":85,"max":88},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11053","display_name":"Process Optimization and Integration","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hindsight-bias","display_name":"Hindsight bias","score":0.6490531},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.4886594},{"id":"https://openalex.org/keywords/bayesian-optimization","display_name":"Bayesian Optimization","score":0.48313925}],"concepts":[{"id":"https://openalex.org/C10347200","wikidata":"https://www.wikidata.org/wiki/Q1960297","display_name":"Hindsight bias","level":2,"score":0.6490531},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6156244},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.52082336},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.4886594},{"id":"https://openalex.org/C2778049539","wikidata":"https://www.wikidata.org/wiki/Q17002908","display_name":"Bayesian optimization","level":2,"score":0.48313925},{"id":"https://openalex.org/C2781249084","wikidata":"https://www.wikidata.org/wiki/Q908656","display_name":"Preference","level":2,"score":0.44835362},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.43649185},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.43115753},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.42814046},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35666174},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23229349},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.078071564},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C180747234","wikidata":"https://www.wikidata.org/wiki/Q23373","display_name":"Cognitive psychology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.04040","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.04040","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.04040","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.5,"display_name":"Partnerships for the goals","id":"https://metadata.un.org/sdg/17"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4245029315","https://openalex.org/W3197854638","https://openalex.org/W3148904318","https://openalex.org/W3140454661","https://openalex.org/W3089780453","https://openalex.org/W2540910169","https://openalex.org/W2139970489","https://openalex.org/W2022803902","https://openalex.org/W1512434910","https://openalex.org/W1492315459"],"abstract_inverted_index":{"Many":[0],"crucial":[1],"scientific":[2],"problems":[3],"involve":[4],"designing":[5],"novel":[6],"molecules":[7,122],"with":[8,51,82],"desired":[9],"properties,":[10],"which":[11],"can":[12],"be":[13],"formulated":[14],"as":[15,77],"a":[16,66,87,100,115],"black-box":[17],"optimization":[18,69],"problem":[19],"over":[20,144],"the":[21,37,73,83],"discrete":[22],"chemical":[23],"space.":[24,59],"In":[25],"practice,":[26],"multiple":[27],"conflicting":[28],"objectives":[29],"and":[30,57,166],"costly":[31],"evaluations":[32],"(e.g.,":[33],"wet-lab":[34],"experiments)":[35],"make":[36],"diversity":[38,53],"of":[39,85,90,163],"candidates":[40],"paramount.":[41],"Computational":[42],"methods":[43,160],"have":[44],"achieved":[45],"initial":[46],"success":[47],"but":[48],"still":[49],"struggle":[50],"considering":[52],"in":[54,126,148,161],"both":[55],"objective":[56],"search":[58],"To":[60],"fill":[61],"this":[62],"gap,":[63],"we":[64],"propose":[65,114],"multi-objective":[67],"Bayesian":[68],"(MOBO)":[70],"algorithm":[71],"leveraging":[72],"hypernetwork-based":[74],"GFlowNets":[75],"(HN-GFN)":[76],"an":[78,95],"acquisition":[79],"function":[80],"optimizer,":[81],"purpose":[84],"sampling":[86],"diverse":[88],"batch":[89],"candidate":[91,164],"molecular":[92],"graphs":[93],"from":[94],"approximate":[96],"Pareto":[97],"front.":[98],"Using":[99],"single":[101],"preference-conditioned":[102],"hypernetwork,":[103],"HN-GFN":[104,138],"learns":[105],"to":[106,119,128,142],"explore":[107],"various":[108,149],"trade-offs":[109],"between":[110],"objectives.":[111],"We":[112,134],"further":[113],"hindsight-like":[116],"off-policy":[117],"strategy":[118],"share":[120],"high-performing":[121],"among":[123],"different":[124],"preferences":[125],"order":[127],"speed":[129],"up":[130],"learning":[131],"for":[132],"HN-GFN.":[133],"empirically":[135],"illustrate":[136],"that":[137,154],"has":[139],"adequate":[140],"capacity":[141],"generalize":[143],"preferences.":[145],"Moreover,":[146],"experiments":[147],"real-world":[150],"MOBO":[151],"settings":[152],"demonstrate":[153],"our":[155],"framework":[156],"predominantly":[157],"outperforms":[158],"existing":[159],"terms":[162],"quality":[165],"sample":[167],"efficiency.":[168],"The":[169],"code":[170],"is":[171],"available":[172],"at":[173],"https://github.com/violet-sto/HN-GFN.":[174]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4319793309","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2025-05-02T05:28:17.502823","created_date":"2023-02-11"}