{"id":"https://openalex.org/W4319653493","doi":"https://doi.org/10.48550/arxiv.2302.03115","title":"Easy Learning from Label Proportions","display_name":"Easy Learning from Label Proportions","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4319653493","doi":"https://doi.org/10.48550/arxiv.2302.03115"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.03115","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.03115","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073592071","display_name":"Robert Istvan Busa-Fekete","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Busa-Fekete, Robert Istvan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032714674","display_name":"Heejin Choi","orcid":"https://orcid.org/0000-0002-6482-9358"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Choi, Heejin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090992760","display_name":"Travis Dick","orcid":"https://orcid.org/0009-0005-1271-307X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dick, Travis","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102025258","display_name":"Claudio Gentile","orcid":"https://orcid.org/0000-0003-1551-2167"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gentile, Claudio","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5031299307","display_name":"Andr\u00e9s Mu\u00f1oz Medina","orcid":"https://orcid.org/0009-0003-5520-4916"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"medina, Andres Munoz","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.787004,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":68,"max":79},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9886,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/empirical-risk-minimization","display_name":"Empirical risk minimization","score":0.7859664},{"id":"https://openalex.org/keywords/debiasing","display_name":"Debiasing","score":0.7252292},{"id":"https://openalex.org/keywords/simplicity","display_name":"Simplicity","score":0.52061486},{"id":"https://openalex.org/keywords/variance-reduction","display_name":"Variance reduction","score":0.49806666},{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.46777764},{"id":"https://openalex.org/keywords/minification","display_name":"Minification","score":0.42359588},{"id":"https://openalex.org/keywords/structured-prediction","display_name":"Structured prediction","score":0.42156696}],"concepts":[{"id":"https://openalex.org/C107321475","wikidata":"https://www.wikidata.org/wiki/Q5374254","display_name":"Empirical risk minimization","level":2,"score":0.7859664},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76971734},{"id":"https://openalex.org/C2779458634","wikidata":"https://www.wikidata.org/wiki/Q24963715","display_name":"Debiasing","level":2,"score":0.7252292},{"id":"https://openalex.org/C2780598303","wikidata":"https://www.wikidata.org/wiki/Q65921492","display_name":"Flexibility (engineering)","level":2,"score":0.6928866},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.60056746},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5436314},{"id":"https://openalex.org/C4679612","wikidata":"https://www.wikidata.org/wiki/Q866298","display_name":"Aggregate (composite)","level":2,"score":0.53963906},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5379553},{"id":"https://openalex.org/C2776372474","wikidata":"https://www.wikidata.org/wiki/Q508291","display_name":"Simplicity","level":2,"score":0.52061486},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5145833},{"id":"https://openalex.org/C62644790","wikidata":"https://www.wikidata.org/wiki/Q3454689","display_name":"Variance reduction","level":3,"score":0.49806666},{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.46777764},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.4553573},{"id":"https://openalex.org/C2780586882","wikidata":"https://www.wikidata.org/wiki/Q7520643","display_name":"Simple (philosophy)","level":2,"score":0.44901156},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.42840505},{"id":"https://openalex.org/C147764199","wikidata":"https://www.wikidata.org/wiki/Q6865248","display_name":"Minification","level":2,"score":0.42359588},{"id":"https://openalex.org/C22367795","wikidata":"https://www.wikidata.org/wiki/Q7625208","display_name":"Structured prediction","level":2,"score":0.42156696},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1752148},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.17105931},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0754292},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C188147891","wikidata":"https://www.wikidata.org/wiki/Q147638","display_name":"Cognitive science","level":1,"score":0.0},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.03115","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.03115","pdf_url":"http://arxiv.org/pdf/2302.03115","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.03115","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.03115","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4283750944","https://openalex.org/W3127825571","https://openalex.org/W3037299979","https://openalex.org/W2951225533","https://openalex.org/W2901060063","https://openalex.org/W2889345639","https://openalex.org/W2303021954","https://openalex.org/W2205410708","https://openalex.org/W2193091921","https://openalex.org/W2107438106"],"abstract_inverted_index":{"We":[0,88],"consider":[1],"the":[2,23,34,37,77,90,129],"problem":[3],"of":[4,25,36,80,92,131,139,179],"Learning":[5],"from":[6],"Label":[7],"Proportions":[8],"(LLP),":[9],"a":[10,54,123,137],"weakly":[11],"supervised":[12],"classification":[13],"setup":[14],"where":[15],"instances":[16],"are":[17],"grouped":[18],"into":[19],"\"bags\",":[20],"and":[21,56,107,148],"only":[22,135],"frequency":[24],"class":[26],"labels":[27],"at":[28,45,84],"each":[29],"bag":[30,143],"is":[31,39],"available.":[32],"Albeit,":[33],"objective":[35],"learner":[38],"to":[40,74,98,153],"achieve":[41],"low":[42],"task":[43],"loss":[44,68,79],"an":[46,81,85],"individual":[47,86],"instance":[48,116],"level.":[49,87],"Here":[50],"we":[51,121,157],"propose":[52],"Easyllp:":[53],"flexible":[55],"simple-to-implement":[57],"debiasing":[58],"approach":[59,94],"based":[60],"on":[61,66,115,162],"aggregate":[62],"labels,":[63],"which":[64],"operates":[65],"arbitrary":[67,82],"functions.":[69],"Our":[70],"technique":[71,126],"allows":[72],"us":[73],"accurately":[75],"estimate":[76],"expected":[78],"model":[83],"showcase":[89],"flexibility":[91],"our":[93,159,166],"by":[95,136],"applying":[96],"it":[97],"popular":[99],"learning":[100,133],"frameworks,":[101],"like":[102],"Empirical":[103],"Risk":[104],"Minimization":[105],"(ERM)":[106],"Stochastic":[108],"Gradient":[109],"Descent":[110],"(SGD)":[111],"with":[112],"provable":[113],"guarantees":[114],"level":[117],"performance.":[118],"More":[119],"concretely,":[120],"exhibit":[122],"variance":[124],"reduction":[125],"that":[127],"makes":[128],"quality":[130],"LLP":[132,175],"deteriorate":[134],"factor":[138],"k":[140],"(k":[141],"being":[142],"size)":[144],"in":[145,177],"both":[146],"ERM":[147],"SGD":[149],"setups,":[150],"as":[151,169],"compared":[152],"full":[154],"supervision.":[155],"Finally,":[156],"validate":[158],"theoretical":[160],"results":[161],"multiple":[163],"datasets":[164],"demonstrating":[165],"algorithm":[167],"performs":[168],"well":[170],"or":[171],"better":[172],"than":[173],"previous":[174],"approaches":[176],"spite":[178],"its":[180],"simplicity.":[181]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4319653493","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-12-07T05:26:24.820641","created_date":"2023-02-10"}