{"id":"https://openalex.org/W4319049671","doi":"https://doi.org/10.48550/arxiv.2302.00441","title":"Scaling Laws for Hyperparameter Optimization","display_name":"Scaling Laws for Hyperparameter Optimization","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4319049671","doi":"https://doi.org/10.48550/arxiv.2302.00441"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.00441","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.00441","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036327077","display_name":"Arlind Kadra","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kadra, Arlind","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103033030","display_name":"Maciej Janowski","orcid":"https://orcid.org/0000-0001-7198-3882"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Janowski, Maciej","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002232506","display_name":"Martin Wistuba","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wistuba, Martin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5052679852","display_name":"Josif Grabocka","orcid":"https://orcid.org/0000-0001-9585-6298"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Grabocka, Josif","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.917444,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9805,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.95,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.95047367},{"id":"https://openalex.org/keywords/bayesian-optimization","display_name":"Bayesian Optimization","score":0.67355955},{"id":"https://openalex.org/keywords/hyperparameter-optimization","display_name":"Hyperparameter Optimization","score":0.61419743},{"id":"https://openalex.org/keywords/competitor-analysis","display_name":"Competitor analysis","score":0.51135415}],"concepts":[{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.95047367},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.711997},{"id":"https://openalex.org/C2778049539","wikidata":"https://www.wikidata.org/wiki/Q17002908","display_name":"Bayesian optimization","level":2,"score":0.67355955},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.63756555},{"id":"https://openalex.org/C10485038","wikidata":"https://www.wikidata.org/wiki/Q48996162","display_name":"Hyperparameter optimization","level":3,"score":0.61419743},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6050176},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.5684584},{"id":"https://openalex.org/C127576917","wikidata":"https://www.wikidata.org/wiki/Q624630","display_name":"Competitor analysis","level":2,"score":0.51135415},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5070319},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.32567304},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15411475},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.07894221},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.00441","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.00441","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.00441","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.81,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4286902601","https://openalex.org/W3206613651","https://openalex.org/W3169687406","https://openalex.org/W3103707007","https://openalex.org/W2996585552","https://openalex.org/W2963001956","https://openalex.org/W2906178137","https://openalex.org/W2405673391","https://openalex.org/W2395916875","https://openalex.org/W2200000192"],"abstract_inverted_index":{"Hyperparameter":[0],"optimization":[1],"is":[2],"an":[3,66],"important":[4],"subfield":[5],"of":[6,15,29,35,40,51,68,96],"machine":[7],"learning":[8,52],"that":[9,31,76],"focuses":[10],"on":[11,107],"tuning":[12],"the":[13,33,41,46,124,132],"hyperparameters":[14],"a":[16,27,78],"chosen":[17],"algorithm":[18],"to":[19,73,88,111,137],"achieve":[20],"peak":[21],"performance.":[22],"Recently,":[23],"there":[24],"has":[25],"been":[26],"stream":[28],"methods":[30,42],"tackle":[32],"issue":[34],"hyperparameter":[36],"optimization,":[37],"however,":[38],"most":[39],"do":[43],"not":[44],"exploit":[45],"dominant":[47],"power":[48],"law":[49],"nature":[50],"curves":[53],"for":[54],"Bayesian":[55],"optimization.":[56],"In":[57],"this":[58],"work,":[59],"we":[60],"propose":[61],"Deep":[62],"Power":[63],"Laws":[64],"(DPL),":[65],"ensemble":[67],"neural":[69],"network":[70],"models":[71],"conditioned":[72],"yield":[74],"predictions":[75],"follow":[77],"power-law":[79],"scaling":[80],"pattern.":[81],"Our":[82,121],"method":[83,102,122],"dynamically":[84],"decides":[85],"which":[86],"configurations":[87],"pause":[89],"and":[90,114],"train":[91],"incrementally":[92],"by":[93,130],"making":[94],"use":[95],"gray-box":[97],"evaluations.":[98],"We":[99],"compare":[100],"our":[101],"against":[103],"7":[104],"state-of-the-art":[105],"competitors":[106],"3":[108],"benchmarks":[109,129],"related":[110],"tabular,":[112],"image,":[113],"NLP":[115],"datasets":[116],"covering":[117],"59":[118],"diverse":[119],"tasks.":[120],"achieves":[123],"best":[125,133],"results":[126,135],"across":[127],"all":[128,138],"obtaining":[131],"any-time":[134],"compared":[136],"competitors.":[139]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4319049671","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-16T05:26:42.380051","created_date":"2023-02-04"}