{"id":"https://openalex.org/W4319049690","doi":"https://doi.org/10.48550/arxiv.2302.00422","title":"Robust online active learning","display_name":"Robust online active learning","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4319049690","doi":"https://doi.org/10.48550/arxiv.2302.00422"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.00422","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.00422","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039180167","display_name":"Davide Cacciarelli","orcid":"https://orcid.org/0000-0001-6664-9038"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cacciarelli, Davide","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044826085","display_name":"Murat K\u00fclah\u00e7\u0131","orcid":"https://orcid.org/0000-0003-4222-9631"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kulahci, Murat","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5057582605","display_name":"John Tyssedal","orcid":"https://orcid.org/0000-0003-1628-4725"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tyssedal, John S\u00f8lve","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11443","display_name":"Advanced Statistical Process Monitoring","score":0.994,"subfield":{"id":"https://openalex.org/subfields/1804","display_name":"Statistics, Probability and Uncertainty"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.7924169},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7584779},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5812483},{"id":"https://openalex.org/C77967617","wikidata":"https://www.wikidata.org/wiki/Q4677561","display_name":"Active learning (machine learning)","level":2,"score":0.5196396},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4782052},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47189984},{"id":"https://openalex.org/C89198739","wikidata":"https://www.wikidata.org/wiki/Q3079880","display_name":"Data stream mining","level":2,"score":0.4179323},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4124155},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.00422","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.00422","pdf_url":"http://arxiv.org/pdf/2302.00422","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.00422","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.00422","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4379741380"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W807005383","https://openalex.org/W3144654663","https://openalex.org/W2369440580","https://openalex.org/W2182399080","https://openalex.org/W2167004500","https://openalex.org/W2109863941","https://openalex.org/W2106570241","https://openalex.org/W1984941792","https://openalex.org/W1501624740","https://openalex.org/W1494355008"],"abstract_inverted_index":{"In":[0,26,133],"many":[1],"industrial":[2],"applications,":[3],"obtaining":[4],"labeled":[5],"observations":[6,53],"is":[7,78,226],"not":[8,129],"straightforward":[9],"as":[10],"it":[11],"often":[12],"requires":[13],"the":[14,20,37,50,60,67,85,88,91,109,118,124,138,153,166,171,175,187,210,223,230,237,243],"intervention":[15],"of":[16,22,52,90,120,126,140,174,190,209,232,239,246],"human":[17],"experts":[18],"or":[19],"use":[21],"expensive":[23],"testing":[24],"equipment.":[25],"these":[27,121],"circumstances,":[28],"active":[29,74,115,142,234],"learning":[30,116,235],"can":[31],"be":[32,43,99],"highly":[33],"beneficial":[34],"in":[35,76,80,123,145,165,228,236],"suggesting":[36],"most":[38],"informative":[39],"data":[40,95,147],"points":[41],"to":[42,71,98,112,160],"used":[44],"when":[45],"fitting":[46],"a":[47,94,183,191,197,203],"model.":[48],"Reducing":[49],"number":[51],"needed":[54],"for":[55,64,93],"model":[56],"development":[57],"alleviates":[58],"both":[59],"computational":[61],"burden":[62],"required":[63],"training":[65,167],"and":[66,195,213],"operational":[68],"expenses":[69],"related":[70],"labeling.":[72],"Online":[73],"learning,":[75],"particular,":[77],"useful":[79],"high-volume":[81],"production":[82],"processes":[83],"where":[84],"decision":[86],"about":[87],"acquisition":[89],"label":[92],"point":[96],"needs":[97],"taken":[100],"within":[101],"an":[102],"extremely":[103],"short":[104],"time":[105],"frame.":[106],"However,":[107],"despite":[108],"recent":[110],"efforts":[111],"develop":[113],"online":[114,141,233],"strategies,":[117],"behavior":[119],"methods":[122],"presence":[125,238],"outliers":[127],"has":[128],"been":[130],"thoroughly":[131],"examined.":[132],"this":[134,179,247],"work,":[135],"we":[136,181,220],"investigate":[137],"performance":[139,173,231],"linear":[143],"regression":[144],"contaminated":[146],"streams.":[148],"Our":[149,200],"study":[150],"shows":[151],"that":[152,185,222],"currently":[154],"available":[155],"query":[156],"strategies":[157],"are":[158],"prone":[159],"sample":[161],"outliers,":[162,240],"whose":[163],"inclusion":[164],"set":[168],"eventually":[169],"degrades":[170],"predictive":[172],"models.":[176],"To":[177],"address":[178],"issue,":[180],"propose":[182],"solution":[184],"bounds":[186],"search":[188],"area":[189],"conditional":[192],"D-optimal":[193],"algorithm":[194],"uses":[196],"robust":[198],"estimator.":[199],"approach":[201],"strikes":[202],"balance":[204],"between":[205],"exploring":[206],"unseen":[207],"regions":[208],"input":[211],"space":[212],"protecting":[214],"against":[215],"outliers.":[216],"Through":[217],"numerical":[218],"simulations,":[219],"show":[221],"proposed":[224],"method":[225],"effective":[227],"improving":[229],"thus":[241],"expanding":[242],"potential":[244],"applications":[245],"powerful":[248],"tool.":[249]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4319049690","counts_by_year":[],"updated_date":"2025-01-04T17:21:15.701510","created_date":"2023-02-04"}