{"id":"https://openalex.org/W4319048819","doi":"https://doi.org/10.48550/arxiv.2302.00098","title":"Deep Active Learning for Scientific Computing in the Wild","display_name":"Deep Active Learning for Scientific Computing in the Wild","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4319048819","doi":"https://doi.org/10.48550/arxiv.2302.00098"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.00098","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2302.00098","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048895233","display_name":"Simiao Ren","orcid":"https://orcid.org/0000-0002-7113-9208"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ren, Simiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5104108250","display_name":"Yang Deng","orcid":"https://orcid.org/0009-0001-3297-2926"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Deng, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077837082","display_name":"Willie J. Padilla","orcid":"https://orcid.org/0000-0001-7734-8847"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Padilla, Willie J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004578492","display_name":"Leslie M. Collins","orcid":"https://orcid.org/0000-0002-9043-6531"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Collins, Leslie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5007239332","display_name":"Jordan M. Malof","orcid":"https://orcid.org/0000-0002-7851-4920"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Malof, Jordan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9477,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.7723533},{"id":"https://openalex.org/keywords/surprise","display_name":"Surprise","score":0.6353877},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5346754}],"concepts":[{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.7723533},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70562005},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.63701206},{"id":"https://openalex.org/C2780343955","wikidata":"https://www.wikidata.org/wiki/Q333173","display_name":"Surprise","level":2,"score":0.6353877},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6043225},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5346754},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.50423396},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.37229925},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.07152578},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.00098","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2302.00098","pdf_url":"http://arxiv.org/pdf/2302.00098","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2302.00098","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2302.00098","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W642988558","https://openalex.org/W4388712630","https://openalex.org/W4380075502","https://openalex.org/W4236382845","https://openalex.org/W2511141457","https://openalex.org/W2481168998","https://openalex.org/W2476994687","https://openalex.org/W2324507472","https://openalex.org/W2173353921","https://openalex.org/W1999899047"],"abstract_inverted_index":{"Deep":[0],"learning":[1,22,39],"(DL)":[2],"is":[3,42,122,138],"revolutionizing":[4],"the":[5,11,31,36,74,79,103,106,118,127],"scientific":[6,32,58,85,145],"computing":[7,33,59,86,146],"community.":[8,34],"To":[9],"reduce":[10],"data":[12],"gap":[13],"caused":[14],"by":[15,45,62],"usually":[16],"expensive":[17],"simulations":[18],"or":[19],"experimentation,":[20],"active":[21,38],"has":[23],"been":[24],"identified":[25],"as":[26],"a":[27,141],"promising":[28],"solution":[29],"for":[30,73,84,140,144],"However,":[35],"deep":[37],"(DAL)":[40],"literature":[41],"currently":[43],"dominated":[44,61],"image":[46],"classification":[47],"problems":[48,64,87],"and":[49,93,129,134],"pool-based":[50],"methods,":[51],"which":[52],"are":[53,109],"not":[54,110],"directly":[55],"transferrable":[56],"to":[57,100,114],"problems,":[60],"regression":[63],"with":[65],"no":[66],"pre-defined":[67],"'pool'":[68],"of":[69,81,105,131],"unlabeled":[70],"data.":[71],"Here":[72],"first":[75],"time,":[76],"we":[77],"investigate":[78],"robustness":[80,130],"DAL":[82,91,107,132,143],"methods":[83,92,108,133],"using":[88],"ten":[89],"state-of-the-art":[90],"eight":[94],"benchmark":[95],"problems.":[96,147],"We":[97,124],"show":[98],"that,":[99],"our":[101],"surprise,":[102],"majority":[104],"robust":[111,142],"even":[112],"compared":[113],"random":[115],"sampling":[116],"when":[117],"ideal":[119],"pool":[120],"size":[121],"unknown.":[123],"further":[125],"analyze":[126],"effectiveness":[128],"suggest":[135],"that":[136],"diversity":[137],"necessary":[139]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4319048819","counts_by_year":[],"updated_date":"2025-02-25T23:55:19.028621","created_date":"2023-02-04"}