{"id":"https://openalex.org/W4318904502","doi":"https://doi.org/10.48550/arxiv.2301.13411","title":"Few-Shot Object Detection via Variational Feature Aggregation","display_name":"Few-Shot Object Detection via Variational Feature Aggregation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4318904502","doi":"https://doi.org/10.48550/arxiv.2301.13411"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.13411","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2301.13411","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5005276003","display_name":"Jiaming Han","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Han, Jiaming","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026379418","display_name":"Yuqiang Ren","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ren, Yuqiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100667253","display_name":"Jian Ding","orcid":"https://orcid.org/0000-0001-9573-1049"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ding, Jian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039611523","display_name":"Ke Yan","orcid":"https://orcid.org/0000-0002-1611-6636"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yan, Ke","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5073032922","display_name":"Gui-Song Xia","orcid":"https://orcid.org/0000-0001-7660-6090"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xia, Gui-Song","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.984,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9559,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pascal","display_name":"Pascal (unit)","score":0.718266},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6099052},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.5549585}],"concepts":[{"id":"https://openalex.org/C75608658","wikidata":"https://www.wikidata.org/wiki/Q44395","display_name":"Pascal (unit)","level":2,"score":0.718266},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6914013},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6099052},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.5549585},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.5482944},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.53692997},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5196044},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.51752305},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.51183003},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.45823342},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.41459745},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32934582},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.15554151},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.13411","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2301.13411","pdf_url":"http://arxiv.org/pdf/2301.13411","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2301.13411","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.13411","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.57}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4376620596","https://openalex.org/W4321789545","https://openalex.org/W4313315626","https://openalex.org/W4299545679","https://openalex.org/W4293054914","https://openalex.org/W3177249605","https://openalex.org/W3138508047","https://openalex.org/W2534152068","https://openalex.org/W1972515067","https://openalex.org/W1689909837"],"abstract_inverted_index":{"As":[0],"few-shot":[1,14],"object":[2,155],"detectors":[3],"are":[4,19,128],"often":[5],"trained":[6],"with":[7,42],"abundant":[8],"base":[9,23,83],"samples":[10],"and":[11,25,61,79,84,121,141,162,176],"fine-tuned":[12],"on":[13,88,149,159],"novel":[15,31,44,85],"examples,the":[16],"learned":[17],"models":[18],"usually":[20],"biased":[21],"to":[22,27,117,131,174],"classes":[24,75],"sensitive":[26],"the":[28,59,89,132,150],"variance":[29,133],"of":[30,68,134],"examples.":[32,136],"To":[33],"address":[34],"this":[35],"issue,":[36],"we":[37,50,91,138],"propose":[38,93],"a":[39,53,94,114,170],"meta-learning":[40],"framework":[41],"two":[43],"feature":[45,110],"aggregation":[46],"schemes.":[47],"More":[48],"precisely,":[49],"first":[51],"present":[52],"Class-Agnostic":[54],"Aggregation":[55,97],"(CAA)":[56],"method,":[57,99],"where":[58],"query":[60],"support":[62,102,106,135],"features":[63,107,124],"can":[64],"be":[65,185],"aggregated":[66],"regardless":[67],"their":[69],"categories.":[70],"The":[71],"interactions":[72],"between":[73,82],"different":[74],"encourage":[76],"class-agnostic":[77],"representations":[78],"reduce":[80],"confusion":[81],"classes.":[86],"Based":[87],"CAA,":[90],"then":[92],"Variational":[95],"Feature":[96],"(VFA)":[98],"which":[100],"encodes":[101],"examples":[103],"into":[104],"class-level":[105],"for":[108],"robust":[109,130],"aggregation.":[111],"We":[112],"use":[113],"variational":[115,123],"autoencoder":[116],"estimate":[118],"class":[119],"distributions":[120,126],"sample":[122],"from":[125],"that":[127,145,165],"more":[129],"Besides,":[137],"decouple":[139],"classification":[140,151],"regression":[142],"tasks":[143],"so":[144],"VFA":[146],"is":[147],"performed":[148],"branch":[152],"without":[153],"affecting":[154],"localization.":[156],"Extensive":[157],"experiments":[158],"PASCAL":[160],"VOC":[161],"COCO":[163],"demonstrate":[164],"our":[166],"method":[167],"significantly":[168],"outperforms":[169],"strong":[171],"baseline":[172],"(up":[173],"16\\%)":[175],"previous":[177],"state-of-the-art":[178],"methods":[179],"(4\\%":[180],"in":[181],"average).":[182],"Code":[183],"will":[184],"available":[186],"at:":[187],"\\url{https://github.com/csuhan/VFA}":[188]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4318904502","counts_by_year":[],"updated_date":"2025-04-08T22:43:26.059547","created_date":"2023-02-03"}