{"id":"https://openalex.org/W4318620328","doi":"https://doi.org/10.48550/arxiv.2301.11375","title":"Neural networks learn to magnify areas near decision boundaries","display_name":"Neural networks learn to magnify areas near decision boundaries","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4318620328","doi":"https://doi.org/10.48550/arxiv.2301.11375"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.11375","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2301.11375","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5063822685","display_name":"Jacob A. Zavatone-Veth","orcid":"https://orcid.org/0000-0002-4060-1738"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zavatone-Veth, Jacob A.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100616280","display_name":"Sheng Yang","orcid":"https://orcid.org/0009-0009-7581-4598"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Sheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022699617","display_name":"Julian A. Rubinfien","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rubinfien, Julian A.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5023195984","display_name":"Cengiz Pehlevan","orcid":"https://orcid.org/0000-0001-9767-6063"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pehlevan, Cengiz","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.806721,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9452,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9452,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.67292744},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.5416733},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.42688894},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.42231035}],"concepts":[{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.69451475},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.67292744},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6651166},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.563625},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.5416733},{"id":"https://openalex.org/C75553542","wikidata":"https://www.wikidata.org/wiki/Q178161","display_name":"A priori and a posteriori","level":2,"score":0.5204787},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.48149264},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.458885},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4586783},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.42688894},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.42460304},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.42231035},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.4166177},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.41488543},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.09793514},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.07416862},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.11375","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2301.11375","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.11375","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.64,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386190339","https://openalex.org/W4298151006","https://openalex.org/W4289536128","https://openalex.org/W3164948662","https://openalex.org/W3153597579","https://openalex.org/W3142333283","https://openalex.org/W2968424575","https://openalex.org/W2905271011","https://openalex.org/W2793270624","https://openalex.org/W2580650124"],"abstract_inverted_index":{"In":[0],"machine":[1],"learning,":[2],"there":[3],"is":[4,29,93],"a":[5,33,41],"long":[6],"history":[7],"of":[8,152,157],"trying":[9],"to":[10,100,105,132],"build":[11],"neural":[12,68,79,142],"networks":[13,80,98,116],"that":[14,49,75],"can":[15,51],"learn":[16,104],"from":[17],"fewer":[18],"example":[19],"data":[20],"by":[21,57,66,95,140],"baking":[22],"in":[23,114,125],"strong":[24],"geometric":[25,36,54],"priors.":[26],"However,":[27],"it":[28],"not":[30],"always":[31],"clear":[32],"priori":[34],"what":[35],"constraints":[37],"are":[38],"appropriate":[39],"for":[40,149],"given":[42],"task.":[43],"Here,":[44],"we":[45],"consider":[46],"the":[47,62,137,147],"possibility":[48],"one":[50],"uncover":[52],"useful":[53],"inductive":[55],"biases":[56],"studying":[58],"how":[59,134],"training":[60,135],"molds":[61],"Riemannian":[63],"geometry":[64,138],"induced":[65,139],"unconstrained":[67,141],"network":[69,143],"feature":[70,96,144,158],"maps.":[71],"We":[72],"first":[73],"show":[74],"at":[76],"infinite":[77],"width,":[78],"with":[81],"random":[82],"parameters":[83],"induce":[84],"highly":[85],"symmetric":[86],"metrics":[87],"on":[88,118],"input":[89],"space.":[90],"This":[91,112],"symmetry":[92],"broken":[94],"learning:":[97],"trained":[99,117],"perform":[101],"classification":[102,121],"tasks":[103],"magnify":[106],"local":[107],"areas":[108],"along":[109],"decision":[110],"boundaries.":[111],"holds":[113],"deep":[115],"high-dimensional":[119],"image":[120],"tasks,":[122],"and":[123],"even":[124],"self-supervised":[126],"representation":[127],"learning.":[128,159],"These":[129],"results":[130],"begins":[131],"elucidate":[133],"shapes":[136],"maps,":[145],"laying":[146],"groundwork":[148],"an":[150],"understanding":[151],"this":[153],"richly":[154],"nonlinear":[155],"form":[156]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4318620328","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-22T03:50:59.148937","created_date":"2023-01-31"}