{"id":"https://openalex.org/W4317437598","doi":"https://doi.org/10.48550/arxiv.2301.05744","title":"Adaptive Neural Networks Using Residual Fitting","display_name":"Adaptive Neural Networks Using Residual Fitting","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4317437598","doi":"https://doi.org/10.48550/arxiv.2301.05744"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.05744","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2301.05744","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5027175679","display_name":"Noah Ford","orcid":"https://orcid.org/0000-0001-6521-848X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ford, Noah","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012600744","display_name":"John Winder","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Winder, John","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5060331010","display_name":"Josh McClellan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"McClellan, Josh","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9198,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.84803146}],"concepts":[{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.84803146},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7743803},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.724397},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.64815646},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6247953},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5802724},{"id":"https://openalex.org/C193415008","wikidata":"https://www.wikidata.org/wiki/Q639681","display_name":"Network architecture","level":2,"score":0.53222996},{"id":"https://openalex.org/C175202392","wikidata":"https://www.wikidata.org/wiki/Q2434543","display_name":"Time delay neural network","level":3,"score":0.47662342},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.46983334},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.45620582},{"id":"https://openalex.org/C126388530","wikidata":"https://www.wikidata.org/wiki/Q1131737","display_name":"Imitation","level":2,"score":0.44410467},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.21048424},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.05744","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2301.05744","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.05744","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.51,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4387947405","https://openalex.org/W4205470293","https://openalex.org/W3183948672","https://openalex.org/W3173606202","https://openalex.org/W3131277441","https://openalex.org/W3110381201","https://openalex.org/W2948807893","https://openalex.org/W2778153218","https://openalex.org/W2758277628","https://openalex.org/W1531601525"],"abstract_inverted_index":{"Current":[0],"methods":[1,16,30],"for":[2,8,69],"estimating":[3],"the":[4,73,78,101],"required":[5],"neural-network":[6],"size":[7],"a":[9,64],"given":[10],"problem":[11],"class":[12],"have":[13],"focused":[14],"on":[15],"that":[17,31,67,112,121],"can":[18,104],"be":[19],"computationally":[20],"intensive,":[21],"such":[22],"as":[23,37,52],"neural-architecture":[24],"search":[25,45],"and":[26,46,76,95,116],"pruning.":[27],"In":[28],"contrast,":[29],"add":[32],"capacity":[33],"to":[34,43,55,119],"neural":[35],"networks":[36,111,120],"needed":[38],"may":[39],"provide":[40],"similar":[41,117],"results":[42],"architecture":[44],"pruning,":[47],"but":[48],"do":[49,113],"not":[50,114],"require":[51],"much":[53,123],"computation":[54],"find":[56],"an":[57],"appropriate":[58],"network":[59,79,103],"size.":[60],"Here,":[61],"we":[62],"present":[63],"network-growth":[65],"method":[66,88],"searches":[68],"explainable":[70],"error":[71,82],"in":[72],"network's":[74],"residuals":[75],"grows":[77],"if":[80],"sufficient":[81],"is":[83],"detected.":[84],"We":[85],"demonstrate":[86],"this":[87],"using":[89],"examples":[90],"from":[91],"classification,":[92],"imitation":[93],"learning,":[94],"reinforcement":[96],"learning.":[97],"Within":[98],"these":[99],"tasks,":[100],"growing":[102],"often":[105],"achieve":[106],"better":[107],"performance":[108,118],"than":[109],"small":[110],"grow,":[115],"begin":[122],"larger.":[124]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4317437598","counts_by_year":[],"updated_date":"2025-01-19T03:16:40.266405","created_date":"2023-01-19"}