{"id":"https://openalex.org/W4316829949","doi":"https://doi.org/10.48550/arxiv.2301.05427","title":"Building a Fuel Moisture Model for the Coupled Fire-Atmosphere Model WRF-SFIRE from Data: From Kalman Filters to Recurrent Neural Networks","display_name":"Building a Fuel Moisture Model for the Coupled Fire-Atmosphere Model WRF-SFIRE from Data: From Kalman Filters to Recurrent Neural Networks","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4316829949","doi":"https://doi.org/10.48550/arxiv.2301.05427"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.05427","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2301.05427","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083042338","display_name":"J. Mandel","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mandel, J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047907673","display_name":"J. Hirschi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hirschi, J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089731511","display_name":"Adam K. Kochanski","orcid":"https://orcid.org/0000-0001-7820-2831"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kochanski, A. K.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057887387","display_name":"Angel Farguell","orcid":"https://orcid.org/0000-0003-2395-220X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Farguell, A.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045722840","display_name":"J. Haley","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Haley, J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005565691","display_name":"D. V. Mallia","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mallia, D. V.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039291771","display_name":"B. Shaddy","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shaddy, B.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085254072","display_name":"A. A. Oberai","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Oberai, A. A.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5054526892","display_name":"K. A. Hilburn","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hilburn, K. A.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10466","display_name":"Meteorological Phenomena and Simulations","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10466","display_name":"Meteorological Phenomena and Simulations","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10029","display_name":"Climate variability and models","score":0.9003,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/solver","display_name":"Solver","score":0.5768139}],"concepts":[{"id":"https://openalex.org/C24552861","wikidata":"https://www.wikidata.org/wiki/Q2670177","display_name":"Data assimilation","level":2,"score":0.83454627},{"id":"https://openalex.org/C157286648","wikidata":"https://www.wikidata.org/wiki/Q846780","display_name":"Kalman filter","level":2,"score":0.79481936},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6223159},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.6110713},{"id":"https://openalex.org/C79334102","wikidata":"https://www.wikidata.org/wiki/Q3072268","display_name":"Ensemble Kalman filter","level":4,"score":0.5981536},{"id":"https://openalex.org/C133204551","wikidata":"https://www.wikidata.org/wiki/Q838305","display_name":"Weather Research and Forecasting Model","level":2,"score":0.59084743},{"id":"https://openalex.org/C2778770139","wikidata":"https://www.wikidata.org/wiki/Q1966904","display_name":"Solver","level":2,"score":0.5768139},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.48196027},{"id":"https://openalex.org/C206833254","wikidata":"https://www.wikidata.org/wiki/Q5421817","display_name":"Extended Kalman filter","level":3,"score":0.45514515},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.44661397},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.42062935},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.30107725},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.27989733},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.09781936},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.05427","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2301.05427","pdf_url":"http://arxiv.org/pdf/2301.05427","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2301.05427","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.05427","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4246354917","https://openalex.org/W4212971657","https://openalex.org/W2991541038","https://openalex.org/W2613759229","https://openalex.org/W2393565244","https://openalex.org/W2377052976","https://openalex.org/W2363380593","https://openalex.org/W2089385108","https://openalex.org/W1996382496","https://openalex.org/W1949985943"],"abstract_inverted_index":{"The":[0],"current":[1],"fuel":[2],"moisture":[3],"content":[4],"(FMC)":[5],"subsystems":[6],"in":[7,64,86],"WRF-SFIRE":[8],"and":[9,53,71,99,189],"its":[10],"workflow":[11],"system":[12,66],"WRFx":[13],"use":[14],"a":[15,65,69,87,107,121,150,182],"time-lag":[16],"differential":[17,155],"equation":[18],"model":[19,52,70],"with":[20,141],"assimilation":[21,101],"of":[22,42,50,54,68,94,113,116,124,153,181,185],"data":[23,62,84,100,172,191],"from":[24,187,192],"FMC":[25,118],"sensors":[26],"on":[27,178],"Remote":[28],"Automated":[29],"Weather":[30],"Stations":[31],"(RAWS)":[32],"by":[33,47],"the":[34,40,43,48,51,55,61,72,80,83,111,114,117,139,154,160,166,171,176,193],"extended":[35],"augmented":[36],"Kalman":[37,56,73],"filter.":[38,57],"But":[39],"quality":[41],"result":[44],"is":[45],"constrained":[46],"limitations":[49],"We":[58,157,174],"observe":[59],"that":[60],"flow":[63,85],"consisting":[67],"filter":[74],"can":[75],"be":[76,79],"interpreted":[77],"to":[78,105,109,120,134,146,164,169],"same":[81],"as":[82],"recurrent":[88],"neural":[89],"network":[90],"(RNN).":[91],"Thus,":[92],"instead":[93],"building":[95],"more":[96],"sophisticated":[97],"models":[98],"methods,":[102],"we":[103,137],"want":[104],"train":[106],"RNN":[108,140,167],"approximate":[110],"dynamics":[112],"response":[115],"sensor":[119],"time":[122,183],"series":[123,184],"environmental":[125],"data.":[126],"Because":[127],"standard":[128],"AI":[129,161],"approaches":[130],"did":[131],"not":[132],"converge":[133],"reasonable":[135],"solutions,":[136],"pre-train":[138],"special":[142],"initial":[143],"weights":[144,168],"devised":[145],"turn":[147],"it":[148],"into":[149],"numerical":[151],"solver":[152],"equation.":[156],"then":[158],"allow":[159],"training":[162],"machinery":[163],"optimize":[165],"fit":[170],"better.":[173],"illustrate":[175],"method":[177],"an":[179],"example":[180],"10h-FMC":[186],"RAWS":[188],"weather":[190],"Real-Time":[194],"Mesoscale":[195],"Analysis":[196],"(RTMA).":[197]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4316829949","counts_by_year":[],"updated_date":"2024-12-09T21:54:22.268215","created_date":"2023-01-17"}