{"id":"https://openalex.org/W4313446849","doi":"https://doi.org/10.48550/arxiv.2212.14449","title":"Policy Mirror Ascent for Efficient and Independent Learning in Mean Field Games","display_name":"Policy Mirror Ascent for Efficient and Independent Learning in Mean Field Games","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4313446849","doi":"https://doi.org/10.48550/arxiv.2212.14449"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.14449","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.14449","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062216823","display_name":"Batuhan Yardim","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yardim, Batuhan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054923152","display_name":"Semih \u00c7ayc\u0131","orcid":"https://orcid.org/0000-0001-7928-0794"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cayci, Semih","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110482875","display_name":"Matthieu Geist","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Geist, Matthieu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5071683073","display_name":"Niao He","orcid":"https://orcid.org/0000-0003-4225-7536"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Niao","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.739061,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9854,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11804","display_name":"Quantum many-body systems","score":0.98,"subfield":{"id":"https://openalex.org/subfields/3107","display_name":"Atomic and Molecular Physics, and Optics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.5127724},{"id":"https://openalex.org/keywords/sample-complexity","display_name":"Sample complexity","score":0.45187542},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.42494676},{"id":"https://openalex.org/keywords/operator","display_name":"Operator (biology)","score":0.41474885}],"concepts":[{"id":"https://openalex.org/C46814582","wikidata":"https://www.wikidata.org/wiki/Q23389","display_name":"Nash equilibrium","level":2,"score":0.7480792},{"id":"https://openalex.org/C32407928","wikidata":"https://www.wikidata.org/wiki/Q2733833","display_name":"Best response","level":3,"score":0.63096523},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.62296546},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.61271936},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.5127724},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.46278694},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.46075517},{"id":"https://openalex.org/C2778445095","wikidata":"https://www.wikidata.org/wiki/Q18354077","display_name":"Sample complexity","level":2,"score":0.45187542},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.43639028},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.42494676},{"id":"https://openalex.org/C17020691","wikidata":"https://www.wikidata.org/wiki/Q139677","display_name":"Operator (biology)","level":5,"score":0.41474885},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.41222072},{"id":"https://openalex.org/C144237770","wikidata":"https://www.wikidata.org/wiki/Q747534","display_name":"Mathematical economics","level":1,"score":0.3602745},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.35517928},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.31982303},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.13499123},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.10580355},{"id":"https://openalex.org/C86339819","wikidata":"https://www.wikidata.org/wiki/Q407384","display_name":"Transcription factor","level":3,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C158448853","wikidata":"https://www.wikidata.org/wiki/Q425218","display_name":"Repressor","level":4,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.14449","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.14449","pdf_url":"http://arxiv.org/pdf/2212.14449","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.14449","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.14449","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4365211920","https://openalex.org/W3207342620","https://openalex.org/W3014948380","https://openalex.org/W2803932348","https://openalex.org/W2728657731","https://openalex.org/W2481143976","https://openalex.org/W2398380006","https://openalex.org/W2236801283","https://openalex.org/W2092374696","https://openalex.org/W1853631319"],"abstract_inverted_index":{"Mean-field":[0],"games":[1],"have":[2],"been":[3],"used":[4,129],"as":[5,139],"a":[6,30,84,89,95,105,122,132,158,166],"theoretical":[7,25],"tool":[8],"to":[9,72,94,100,130],"obtain":[10],"an":[11],"approximate":[12],"Nash":[13,74,137],"equilibrium":[14,75,138],"for":[15,148,177],"symmetric":[16],"and":[17],"anonymous":[18],"$N$-player":[19,59],"games.":[20],"However,":[21],"limiting":[22],"applicability,":[23],"existing":[24],"results":[26],"assume":[27],"variations":[28],"of":[29,38,57,76,112],"\"population":[31],"generative":[32,91,168],"model\",":[33],"which":[34],"allows":[35,176],"arbitrary":[36],"modifications":[37],"the":[39,43,58,73,77,101,109,115,136,162],"population":[40,55,90,167],"distribution":[41],"by":[42,155,180],"learning":[44,47,147,179],"algorithm.":[45],"Moreover,":[46],"algorithms":[48],"typically":[49],"work":[50],"on":[51],"abstract":[52],"simulators":[53],"with":[54,114,183],"instead":[56,111],"game.":[60],"Instead,":[61],"we":[62,118,171],"show":[63,120],"that":[64,121,173],"$N$":[65,181],"agents":[66,182],"running":[67],"policy":[68,123],"mirror":[69,124],"ascent":[70,125],"converge":[71],"regularized":[78],"game":[79],"within":[80],"$\\widetilde{\\mathcal{O}}(\\varepsilon^{-2})$":[81],"samples":[82],"from":[83,108,161],"single":[85],"sample":[86,152,159,185],"trajectory":[87],"without":[88,165],"model,":[92],"up":[93],"standard":[96],"$\\mathcal{O}(\\frac{1}{\\sqrt{N}})$":[97],"error":[98],"due":[99],"mean":[102],"field.":[103],"Taking":[104],"divergent":[106],"approach":[107],"literature,":[110],"working":[113],"best-response":[116],"map":[117,126],"first":[119],"can":[127],"be":[128],"construct":[131],"contractive":[133],"operator":[134],"having":[135],"its":[140],"fixed":[141],"point.":[142],"We":[143],"analyze":[144],"single-path":[145],"TD":[146],"$N$-agent":[149,163],"games,":[150],"proving":[151],"complexity":[153],"guarantees":[154],"only":[156],"using":[157],"path":[160],"simulator":[164],"model.":[169],"Furthermore,":[170],"demonstrate":[172],"our":[174],"methodology":[175],"independent":[178],"finite":[184],"guarantees.":[186]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313446849","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-04T17:57:54.170971","created_date":"2023-01-06"}