{"id":"https://openalex.org/W4313303921","doi":"https://doi.org/10.48550/arxiv.2212.13979","title":"TiG-BEV: Multi-view BEV 3D Object Detection via Target Inner-Geometry Learning","display_name":"TiG-BEV: Multi-view BEV 3D Object Detection via Target Inner-Geometry Learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4313303921","doi":"https://doi.org/10.48550/arxiv.2212.13979"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.13979","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.13979","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5109703162","display_name":"Peixiang Huang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Peixiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100418783","display_name":"Li Liu","orcid":"https://orcid.org/0000-0002-2011-2873"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Li","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102891082","display_name":"Renrui Zhang","orcid":"https://orcid.org/0000-0003-4503-5277"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Renrui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005908452","display_name":"Song Zhang","orcid":"https://orcid.org/0000-0001-8452-4837"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Song","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111926973","display_name":"Xinli Xu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Xinli","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089450117","display_name":"Baichao Wang","orcid":"https://orcid.org/0000-0003-1330-1219"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Baichao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5075923060","display_name":"Guoyi Liu","orcid":"https://orcid.org/0000-0003-2356-1903"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Guoyi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":14,"citation_normalized_percentile":{"value":0.8224,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.616533}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7062197},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6766182},{"id":"https://openalex.org/C51399673","wikidata":"https://www.wikidata.org/wiki/Q504027","display_name":"Lidar","level":2,"score":0.67015964},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6575096},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.616533},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.4905011},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.47312158},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.43834937},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.42121908},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.30747294},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.20583695},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.1601888},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15767717},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.13818622},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.13979","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.13979","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.13979","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390887692","https://openalex.org/W4319837668","https://openalex.org/W4319317934","https://openalex.org/W4308071650","https://openalex.org/W4281783339","https://openalex.org/W4210818033","https://openalex.org/W3188333020","https://openalex.org/W2956374172","https://openalex.org/W2901265155","https://openalex.org/W1964041166"],"abstract_inverted_index":{"To":[0,137],"achieve":[1],"accurate":[2],"and":[3,28,50,82,151,170,179],"low-cost":[4],"3D":[5],"object":[6],"detection,":[7],"existing":[8],"methods":[9],"propose":[10,63],"to":[11,41,95,111,126],"benefit":[12],"camera-based":[13,75,109],"multi-view":[14],"detectors":[15,77],"with":[16,174],"spatial":[17,116],"cues":[18],"provided":[19],"by":[20,167,176],"the":[21,45,53,64,71,97,108,114,128,140],"LiDAR":[22,40,72],"modality,":[23],"e.g.,":[24],"dense":[25,80],"depth":[26,81,100],"supervision":[27,93],"bird-eye-view":[29],"(BEV)":[30],"feature":[31,142],"distillation.":[32],"However,":[33],"they":[34],"directly":[35],"conduct":[36],"point-to-point":[37],"mimicking":[38],"from":[39,52,70],"camera,":[42],"which":[43],"neglects":[44],"inner-geometry":[46,160],"of":[47,67,131],"foreground":[48,104,135],"targets":[49],"suffers":[51],"modal":[54],"gap":[55,143],"between":[56,102,144],"2D-3D":[57],"features.":[58],"In":[59],"this":[60],"paper,":[61],"we":[62,89,119,147],"learning":[65],"scheme":[66],"Target":[68],"Inner-Geometry":[69],"modality":[73],"into":[74],"BEV":[76,83,123,141],"for":[78,154],"both":[79,149],"features,":[84],"termed":[85],"as":[86],"TiG-BEV.":[87],"First,":[88],"introduce":[90],"an":[91,121],"inner-depth":[92],"module":[94,125],"learn":[96],"low-level":[98],"relative":[99],"relations":[101],"different":[103,132],"pixels.":[105],"This":[106],"enables":[107],"detector":[110],"better":[112],"understand":[113],"object-wise":[115],"structures.":[117],"Second,":[118],"design":[120],"inner-feature":[122],"distillation":[124,153],"imitate":[127],"high-level":[129],"semantics":[130],"keypoints":[133],"within":[134],"targets.":[136],"further":[138],"alleviate":[139],"two":[145],"modalities,":[146],"adopt":[148],"inter-channel":[150],"inter-keypoint":[152],"feature-similarity":[155],"modeling.":[156],"With":[157],"our":[158],"target":[159],"distillation,":[161],"TiG-BEV":[162],"can":[163],"effectively":[164],"boost":[165],"BEVDepth":[166],"+2.3%":[168],"NDS":[169,178],"+2.4%":[171],"mAP,":[172],"along":[173],"BEVDet":[175],"+9.1%":[177],"+10.3%":[180],"mAP":[181],"on":[182],"nuScenes":[183],"val":[184],"set.":[185],"Code":[186],"will":[187],"be":[188],"available":[189],"at":[190],"https://github.com/ADLab3Ds/TiG-BEV.":[191]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313303921","counts_by_year":[{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":6}],"updated_date":"2025-04-04T10:14:24.314315","created_date":"2023-01-06"}