{"id":"https://openalex.org/W4313305743","doi":"https://doi.org/10.48550/arxiv.2212.12700","title":"JDNN: Jacobi Deep Neural Network for Solving Telegraph Equation","display_name":"JDNN: Jacobi Deep Neural Network for Solving Telegraph Equation","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4313305743","doi":"https://doi.org/10.48550/arxiv.2212.12700"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.12700","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.12700","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062931482","display_name":"Maryam Babaei","orcid":"https://orcid.org/0000-0001-9030-5251"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Babaei, Maryam","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045624120","display_name":"Kimia Mohammadi Mohammadi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mohammadi, Kimia Mohammadi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003853370","display_name":"Zeinab Hajimohammadi","orcid":"https://orcid.org/0000-0001-5908-6046"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hajimohammadi, Zeinab","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5090033177","display_name":"Kourosh Parand","orcid":"https://orcid.org/0000-0001-5946-0771"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Parand, Kourosh","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.769821,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11416","display_name":"Numerical methods for differential equations","score":0.9248,"subfield":{"id":"https://openalex.org/subfields/2612","display_name":"Numerical Analysis"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10288","display_name":"Fractional Differential Equations Solutions","score":0.9135,"subfield":{"id":"https://openalex.org/subfields/2611","display_name":"Modeling and Simulation"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/graphics-processing-unit","display_name":"Graphics processing unit","score":0.51742774}],"concepts":[{"id":"https://openalex.org/C93779851","wikidata":"https://www.wikidata.org/wiki/Q271977","display_name":"Partial differential equation","level":2,"score":0.6873636},{"id":"https://openalex.org/C73000952","wikidata":"https://www.wikidata.org/wiki/Q17007827","display_name":"Discretization","level":2,"score":0.6744937},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.63493377},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.62363815},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.57080215},{"id":"https://openalex.org/C2779851693","wikidata":"https://www.wikidata.org/wiki/Q183484","display_name":"Graphics processing unit","level":2,"score":0.51742774},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.49807835},{"id":"https://openalex.org/C78045399","wikidata":"https://www.wikidata.org/wiki/Q11214","display_name":"Differential equation","level":2,"score":0.49422792},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.47322264},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.44133416},{"id":"https://openalex.org/C77618280","wikidata":"https://www.wikidata.org/wiki/Q1155772","display_name":"Scheme (mathematics)","level":2,"score":0.43155146},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3731981},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32864285},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3159173},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.20574248},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.17219266},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.080237746},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.12700","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.12700","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.12700","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W946352265","https://openalex.org/W3020787026","https://openalex.org/W2799209613","https://openalex.org/W2793786119","https://openalex.org/W2364741597","https://openalex.org/W2334479858","https://openalex.org/W2029287765","https://openalex.org/W2006251942","https://openalex.org/W1864774435","https://openalex.org/W1492103595"],"abstract_inverted_index":{"In":[0],"this":[1],"article,":[2],"a":[3,15,90],"new":[4],"deep":[5],"learning":[6,98],"architecture,":[7],"named":[8],"JDNN,":[9],"has":[10,37],"been":[11],"proposed":[12,87,118],"to":[13,18,55,77,95],"approximate":[14],"numerical":[16,113],"solution":[17],"Partial":[19],"Differential":[20],"Equations":[21],"(PDEs).":[22],"The":[23,69,86],"JDNN":[24],"is":[25,75],"capable":[26],"of":[27,41,61,82,103,125],"solving":[28,65],"high-dimensional":[29],"equations.":[30,43,68],"Here,":[31],"Jacobi":[32,49],"Deep":[33],"Neural":[34],"Network":[35],"(JDNN)":[36],"demonstrated":[38],"various":[39],"types":[40],"telegraph":[42],"This":[44],"model":[45],"utilizes":[46,89],"the":[47,52,57,62,79,83,97,104,109,112,117,123,126],"orthogonal":[48],"polynomials":[50],"as":[51],"activation":[53],"function":[54],"increase":[56],"accuracy":[58],"and":[59],"stability":[60],"method":[63],"for":[64],"partial":[66],"differential":[67],"finite":[70],"difference":[71],"time":[72],"discretization":[73],"technique":[74],"used":[76],"overcome":[78],"computational":[80],"complexity":[81],"given":[84],"equation.":[85],"scheme":[88],"Graphics":[91],"Processing":[92],"Unit":[93],"(GPU)":[94],"accelerate":[96],"process":[99],"by":[100],"taking":[101],"advantage":[102],"neural":[105],"network":[106],"platforms.":[107],"Comparing":[108],"existing":[110],"methods,":[111],"experiments":[114],"show":[115],"that":[116],"approach":[119],"can":[120],"efficiently":[121],"learn":[122],"dynamics":[124],"physical":[127],"problem.":[128]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313305743","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-06T06:16:42.341010","created_date":"2023-01-06"}