{"id":"https://openalex.org/W4312206282","doi":"https://doi.org/10.48550/arxiv.2212.12345","title":"Piecewise-Velocity Model for Learning Continuous-time Dynamic Node Representations","display_name":"Piecewise-Velocity Model for Learning Continuous-time Dynamic Node Representations","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4312206282","doi":"https://doi.org/10.48550/arxiv.2212.12345"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.12345","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.12345","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5086636153","display_name":"Abdulkadir \u00c7elikkanat","orcid":"https://orcid.org/0000-0001-8912-711X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"\u00c7elikkanat, Abdulkadir","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018195808","display_name":"Nikolaos Nakis","orcid":"https://orcid.org/0000-0001-9311-3458"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nakis, Nikolaos","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5059840085","display_name":"Morten M\u00f8rup","orcid":"https://orcid.org/0000-0003-4985-4368"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"M\u00f8rup, Morten","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.934783,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":70,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9912,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9912,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13283","display_name":"Mental Health Research Topics","score":0.986,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10241","display_name":"Functional Brain Connectivity Studies","score":0.9775,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.4477185},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.4442064},{"id":"https://openalex.org/keywords/dynamic-network-analysis","display_name":"Dynamic network analysis","score":0.4154326}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6795472},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.5557303},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.5029287},{"id":"https://openalex.org/C62611344","wikidata":"https://www.wikidata.org/wiki/Q1062658","display_name":"Node (physics)","level":2,"score":0.47391924},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.45567638},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.4477185},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.4442064},{"id":"https://openalex.org/C164660894","wikidata":"https://www.wikidata.org/wiki/Q2037833","display_name":"Piecewise","level":2,"score":0.43893364},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.42727304},{"id":"https://openalex.org/C13540734","wikidata":"https://www.wikidata.org/wiki/Q5318996","display_name":"Dynamic network analysis","level":2,"score":0.4154326},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34703016},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3328055},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24594283},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.12345","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.12345","pdf_url":"http://arxiv.org/pdf/2212.12345","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.12345","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.12345","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.58,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W328874995","https://openalex.org/W25079857","https://openalex.org/W2385263368","https://openalex.org/W2377341410","https://openalex.org/W2353392568","https://openalex.org/W2347422947","https://openalex.org/W2061292372","https://openalex.org/W2055243143","https://openalex.org/W2005126053","https://openalex.org/W1454600515"],"abstract_inverted_index":{"Networks":[0],"have":[1,59],"become":[2],"indispensable":[3],"and":[4,37,87,102,189,211,238],"ubiquitous":[5],"structures":[6],"in":[7,20,26,89,124,213,222],"many":[8],"fields":[9],"to":[10,33,165,180,197],"model":[11,142,149],"the":[12,35,63,109,114,126,156,166,181,199,247],"interactions":[13,25],"among":[14],"different":[15],"entities,":[16],"such":[17,99,225],"as":[18,100,226],"friendship":[19],"social":[21],"networks":[22,43],"or":[23],"protein":[24],"biological":[27],"graphs.":[28],"A":[29],"major":[30],"challenge":[31],"is":[32,69,131],"understand":[34],"structure":[36,210],"dynamics":[38,182,212,249],"of":[39,65,72,116,129,155,168,246,250],"these":[40],"systems.":[41],"Although":[42],"evolve":[44],"through":[45],"time,":[46],"most":[47],"existing":[48],"graph":[49,77],"representation":[50,78,115],"learning":[51,79],"methods":[52,80,221],"target":[53],"only":[54],"static":[55],"networks.":[56,119,252],"Whereas":[57],"approaches":[58],"been":[60],"developed":[61],"for":[62,95,113,151,184],"modeling":[64],"dynamic":[66,76,118,122,235],"networks,":[67],"there":[68],"a":[70,139,173],"lack":[71],"efficient":[73],"continuous":[74],"time":[75],"that":[81,204,240],"can":[82,206,241],"provide":[83],"accurate":[84],"network":[85,97,200,209,236],"characterization":[86],"visualization":[88],"low":[90],"dimensions":[91,194],"while":[92],"explicitly":[93],"accounting":[94,183],"prominent":[96],"characteristics":[98],"homophily":[101],"transitivity.":[103],"In":[104,229],"this":[105],"paper,":[106],"we":[107],"propose":[108],"Piecewise-Velocity":[110],"Model":[111],"(PiVeM)":[112],"continuous-time":[117],"It":[120,217],"learns":[121],"embeddings":[123],"which":[125],"temporal":[127,187],"evolution":[128],"nodes":[130],"approximated":[132],"by":[133],"piecewise":[134,144],"linear":[135],"interpolations":[136],"based":[137],"on":[138],"latent":[140,192],"distance":[141],"with":[143,161],"constant":[145],"node-specific":[146],"velocities.":[147],"The":[148],"allows":[150],"analytically":[152],"tractable":[153],"expressions":[154],"associated":[157],"Poisson":[158],"process":[159],"likelihood":[160],"scalable":[162,174],"inference":[163],"invariant":[164],"number":[167],"events.":[169],"We":[170,202],"further":[171,242],"impose":[172],"Kronecker":[175],"structured":[176],"Gaussian":[177],"Process":[178],"prior":[179],"community":[185],"structure,":[186],"smoothness,":[188],"disentangled":[190],"(uncorrelated)":[191],"embedding":[193],"optimally":[195],"learned":[196],"characterize":[198],"dynamics.":[201],"show":[203],"PiVeM":[205,231],"successfully":[207],"represent":[208],"ultra-low":[214],"two-dimensional":[215],"spaces.":[216],"outperforms":[218],"relevant":[219],"state-of-art":[220],"downstream":[223],"tasks":[224],"link":[227],"prediction.":[228],"summary,":[230],"enables":[232],"easily":[233],"interpretable":[234],"visualizations":[237],"characterizations":[239],"improve":[243],"our":[244],"understanding":[245],"intrinsic":[248],"time-evolving":[251]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312206282","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-06T06:16:35.888796","created_date":"2023-01-04"}