{"id":"https://openalex.org/W4312107783","doi":"https://doi.org/10.48550/arxiv.2212.10929","title":"SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning","display_name":"SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4312107783","doi":"https://doi.org/10.48550/arxiv.2212.10929"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.10929","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.10929","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5034756201","display_name":"M Saiful Bari","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bari, M Saiful","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049841140","display_name":"Aston Zhang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Aston","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100726973","display_name":"Shuai Zheng","orcid":"https://orcid.org/0000-0002-1636-631X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Shuai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091515481","display_name":"Xingjian Shi","orcid":"https://orcid.org/0000-0002-2700-7742"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Xingjian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100434324","display_name":"Yi Zhu","orcid":"https://orcid.org/0000-0003-3000-3918"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Yi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005443526","display_name":"Shafiq Joty","orcid":"https://orcid.org/0000-0002-9222-2641"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Joty, Shafiq","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100399461","display_name":"Mu Li","orcid":"https://orcid.org/0000-0002-4433-2301"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Mu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.60916,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/fine-tuning","display_name":"Fine-tuning","score":0.44237065}],"concepts":[{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.8087387},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7699312},{"id":"https://openalex.org/C28006648","wikidata":"https://www.wikidata.org/wiki/Q6934509","display_name":"Multi-task learning","level":3,"score":0.66775876},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60410243},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.59343535},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.58381265},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.56909484},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.549499},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53800535},{"id":"https://openalex.org/C157524613","wikidata":"https://www.wikidata.org/wiki/Q2828883","display_name":"Fine-tuning","level":2,"score":0.44237065},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.42729658},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.3420616},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.07193416},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.10929","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.10929","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.10929","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4309877123","https://openalex.org/W4287802662","https://openalex.org/W3162204513","https://openalex.org/W3154646238","https://openalex.org/W3037551068","https://openalex.org/W3023594376","https://openalex.org/W3023285645","https://openalex.org/W2371138613","https://openalex.org/W2116305750","https://openalex.org/W2048963458"],"abstract_inverted_index":{"Pre-trained":[0],"large":[1],"language":[2,102],"models":[3],"can":[4,16],"efficiently":[5],"interpolate":[6],"human-written":[7],"prompts":[8,87],"in":[9,40],"a":[10,20,66,81,100],"natural":[11],"way.":[12],"Multitask":[13],"prompted":[14,73],"learning":[15],"help":[17],"generalization":[18,117],"through":[19],"diverse":[21],"set":[22],"of":[23,78,144],"tasks":[24,109],"at":[25],"once,":[26],"thus":[27],"enhancing":[28],"the":[29,41,55,132,139],"potential":[30],"for":[31,71],"more":[32],"effective":[33],"downstream":[34],"fine-tuning.":[35],"To":[36],"perform":[37],"efficient":[38],"multitask-inference":[39],"same":[42],"batch,":[43],"parameter-efficient":[44],"fine-tuning":[45,99,137],"methods":[46,59],"such":[47,96],"as":[48,97],"prompt":[49,57,68],"tuning":[50,58,69],"have":[51],"been":[52],"proposed.":[53],"However,":[54],"existing":[56],"may":[60],"lack":[61],"generalization.":[62],"We":[63],"propose":[64],"SPT,":[65],"semi-parametric":[67],"method":[70],"multitask":[72],"learning.":[74],"The":[75],"novel":[76],"component":[77],"SPT":[79,105,130],"is":[80],"memory":[82,86],"bank":[83],"from":[84,110],"where":[85],"are":[88],"retrieved":[89],"based":[90],"on":[91,106,118,131,138],"discrete":[92],"prompts.":[93],"Extensive":[94],"experiments,":[95],"(i)":[98],"full":[101],"model":[103],"with":[104],"31":[107],"different":[108,112],"8":[111],"domains":[113],"and":[114,127,135],"evaluating":[115,136],"zero-shot":[116],"9":[119],"heldout":[120],"datasets":[121,134],"under":[122],"5":[123],"NLP":[124],"task":[125],"categories":[126],"(ii)":[128],"pretraining":[129],"GLUE":[133],"SuperGLUE":[140],"datasets,":[141],"demonstrate":[142],"effectiveness":[143],"SPT.":[145]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312107783","counts_by_year":[{"year":2023,"cited_by_count":3}],"updated_date":"2025-04-30T02:48:48.303653","created_date":"2023-01-04"}