{"id":"https://openalex.org/W4312107683","doi":"https://doi.org/10.48550/arxiv.2212.10839","title":"Consistent Range Approximation for Fair Predictive Modeling","display_name":"Consistent Range Approximation for Fair Predictive Modeling","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4312107683","doi":"https://doi.org/10.48550/arxiv.2212.10839"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.10839","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.10839","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004156121","display_name":"Jiongli Zhu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Jiongli","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028728844","display_name":"Nazanin Sabri","orcid":"https://orcid.org/0000-0002-0861-9444"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sabri, Nazanin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038532934","display_name":"Sainyam Galhotra","orcid":"https://orcid.org/0000-0003-2529-4036"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Galhotra, Sainyam","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5103209063","display_name":"Babak Salimi","orcid":"https://orcid.org/0000-0003-2485-9533"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Salimi, Babak","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9514,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9514,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.70821077},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.65830636},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.5932257},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.47109327},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38610205},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37607318},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.10839","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.10839","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.10839","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390590544","https://openalex.org/W4384212932","https://openalex.org/W4306674287","https://openalex.org/W4286629047","https://openalex.org/W4224009465","https://openalex.org/W4205958290","https://openalex.org/W2990460313","https://openalex.org/W2973458857","https://openalex.org/W2961085424","https://openalex.org/W2096195258"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"a":[3,40,44,72],"novel":[4],"framework":[5,48,82],"for":[6,22,39,76],"certifying":[7],"the":[8,29,53,67,81,91,96],"fairness":[9,37,77],"of":[10,31,36,52,74,95,98],"predictive":[11,41,84],"models":[12,85],"trained":[13],"on":[14,43,90,110],"biased":[15,58],"data.":[16],"It":[17],"draws":[18],"from":[19],"query":[20],"answering":[21],"incomplete":[23],"and":[24,57],"inconsistent":[25],"databases":[26],"to":[27,70],"formulate":[28],"problem":[30],"consistent":[32],"range":[33,73],"approximation":[34],"(CRA)":[35],"queries":[38],"model":[42],"target":[45,68,92],"population.":[46],"The":[47,103],"employs":[49],"background":[50],"knowledge":[51],"data":[54,100],"collection":[55],"process":[56],"data,":[59,112],"working":[60],"with":[61],"or":[62],"without":[63],"limited":[64],"statistics":[65],"about":[66],"population,":[69,93],"compute":[71],"answers":[75],"queries.":[78],"Using":[79],"CRA,":[80],"builds":[83],"that":[86],"are":[87],"certifiably":[88],"fair":[89],"regardless":[94],"availability":[97],"external":[99],"during":[101],"training.":[102],"framework's":[104],"efficacy":[105],"is":[106],"demonstrated":[107],"through":[108],"evaluations":[109],"real":[111],"showing":[113],"substantial":[114],"improvement":[115],"over":[116],"existing":[117],"state-of-the-art":[118],"methods.":[119]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312107683","counts_by_year":[],"updated_date":"2025-03-04T23:32:10.082411","created_date":"2023-01-04"}