{"id":"https://openalex.org/W4312048192","doi":"https://doi.org/10.48550/arxiv.2212.09035","title":"Minimizing Maximum Model Discrepancy for Transferable Black-box Targeted Attacks","display_name":"Minimizing Maximum Model Discrepancy for Transferable Black-box Targeted Attacks","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4312048192","doi":"https://doi.org/10.48550/arxiv.2212.09035"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.09035","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.09035","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103070327","display_name":"Anqi Zhao","orcid":"https://orcid.org/0000-0003-2024-1680"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Anqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077917968","display_name":"Tong Chu","orcid":"https://orcid.org/0000-0002-0200-772X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chu, Tong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070759632","display_name":"Yahao Liu","orcid":"https://orcid.org/0000-0002-6754-2264"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Yahao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100320282","display_name":"Wen Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Wen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100338386","display_name":"Jingjing Li","orcid":"https://orcid.org/0000-0002-5504-2529"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Jingjing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5080093489","display_name":"Lixin Duan","orcid":"https://orcid.org/0000-0002-0723-4016"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Duan, Lixin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9648,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9203,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/black-box","display_name":"Black box","score":0.7297914},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.6888046}],"concepts":[{"id":"https://openalex.org/C94966114","wikidata":"https://www.wikidata.org/wiki/Q29256","display_name":"Black box","level":2,"score":0.7297914},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71671665},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.6888046},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.68115187},{"id":"https://openalex.org/C12713177","wikidata":"https://www.wikidata.org/wiki/Q1900281","display_name":"Perspective (graphical)","level":2,"score":0.52340895},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.50630176},{"id":"https://openalex.org/C2780992000","wikidata":"https://www.wikidata.org/wiki/Q17016113","display_name":"Generator (circuit theory)","level":3,"score":0.49320453},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4028908},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34436226},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28805095},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17051071},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.09035","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.09035","pdf_url":"http://arxiv.org/pdf/2212.09035","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.09035","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.09035","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4310988119","https://openalex.org/W4297672492","https://openalex.org/W4246396837","https://openalex.org/W3191453585","https://openalex.org/W3126451824","https://openalex.org/W3037859390","https://openalex.org/W3009622996","https://openalex.org/W2502115930","https://openalex.org/W2482350142","https://openalex.org/W1561927205"],"abstract_inverted_index":{"In":[0,109],"this":[1,110],"work,":[2],"we":[3,19,74,90],"study":[4],"the":[5,11,16,37,40,45,59,63,71,93,98,103,126,131,136,144],"black-box":[6,26,80,137],"targeted":[7,27,81],"attack":[8,46,56],"problem":[9],"from":[10],"model":[12,51,61,65,95,113,127],"discrepancy":[13,66],"perspective.":[14],"On":[15,70],"theoretical":[17,33,86],"side,":[18,73],"present":[20],"a":[21,31,49,76,160],"generalization":[22],"error":[23,47,57],"bound":[24],"for":[25,35,79,134],"attacks,":[28],"which":[29,89],"gives":[30],"rigorous":[32],"analysis":[34],"guaranteeing":[36],"success":[38,132],"of":[39,97,116],"attack.":[41],"We":[42,139],"reveal":[43],"that":[44,122],"on":[48,54,58,84,143],"target":[50],"mainly":[52],"depends":[53],"empirical":[55],"substitute":[60,68,99],"and":[62,151],"maximum":[64,94],"among":[67],"models.":[69],"algorithmic":[72],"derive":[75],"new":[77],"algorithm":[78],"attacks":[82],"based":[83],"our":[85,112,152],"analysis,":[87],"in":[88],"additionally":[91],"minimize":[92],"discrepancy(M3D)":[96],"models":[100],"when":[101],"training":[102],"generator":[104],"to":[105,125],"generate":[106],"adversarial":[107,120],"examples.":[108],"way,":[111],"is":[114],"capable":[115],"crafting":[117],"highly":[118],"transferable":[119],"examples":[121],"are":[123],"robust":[124],"variation,":[128],"thus":[129],"improving":[130],"rate":[133],"attacking":[135],"model.":[138],"conduct":[140],"extensive":[141],"experiments":[142],"ImageNet":[145],"dataset":[146],"with":[147],"different":[148],"classification":[149],"models,":[150],"proposed":[153],"approach":[154],"outperforms":[155],"existing":[156],"state-of-the-art":[157],"methods":[158],"by":[159],"significant":[161],"margin.":[162],"Our":[163],"codes":[164],"will":[165],"be":[166],"released.":[167]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312048192","counts_by_year":[],"updated_date":"2025-03-03T08:45:41.098022","created_date":"2023-01-04"}