{"id":"https://openalex.org/W4311994464","doi":"https://doi.org/10.48550/arxiv.2212.08472","title":"One-Stage Cascade Refinement Networks for Infrared Small Target Detection","display_name":"One-Stage Cascade Refinement Networks for Infrared Small Target Detection","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4311994464","doi":"https://doi.org/10.48550/arxiv.2212.08472"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.08472","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"journal-article","indexed_in":["datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.08472","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101658016","display_name":"Yimian Dai","orcid":"https://orcid.org/0000-0003-1052-2489"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dai, Yimian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109374705","display_name":"Li Xiang","orcid":"https://orcid.org/0000-0002-9946-7000"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Xiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100610923","display_name":"Fei Zhou","orcid":"https://orcid.org/0000-0001-9659-4648"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Fei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073303236","display_name":"Yulei Qian","orcid":"https://orcid.org/0000-0002-5972-3145"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qian, Yulei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060075182","display_name":"Yaohong Chen","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Yaohong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5083577000","display_name":"Jian Yang","orcid":"https://orcid.org/0000-0002-7329-4738"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Jian","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12389","display_name":"Infrared Target Detection Methodologies","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12389","display_name":"Infrared Target Detection Methodologies","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11856","display_name":"Thermography and Photoacoustic Techniques","score":0.9912,"subfield":{"id":"https://openalex.org/subfields/2211","display_name":"Mechanics of Materials"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11324","display_name":"Spectroscopy Techniques in Biomedical and Chemical Research","score":0.9743,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.69544494},{"id":"https://openalex.org/keywords/bounding-overwatch","display_name":"Bounding overwatch","score":0.48252127},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.47775164},{"id":"https://openalex.org/keywords/minimum-bounding-box","display_name":"Minimum bounding box","score":0.4249591}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8170743},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.69544494},{"id":"https://openalex.org/C34146451","wikidata":"https://www.wikidata.org/wiki/Q5048094","display_name":"Cascade","level":2,"score":0.66264534},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5428479},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.52470005},{"id":"https://openalex.org/C63584917","wikidata":"https://www.wikidata.org/wiki/Q333286","display_name":"Bounding overwatch","level":2,"score":0.48252127},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.47775164},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.44964302},{"id":"https://openalex.org/C147037132","wikidata":"https://www.wikidata.org/wiki/Q6865426","display_name":"Minimum bounding box","level":3,"score":0.4249591},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4147435},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.41168198},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.40462485},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39824486},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.11187363},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.08472","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2212.08472","pdf_url":"http://arxiv.org/pdf/2212.08472","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.08472","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.08472","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":null,"is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Partnerships for the goals","id":"https://metadata.un.org/sdg/17","score":0.43}],"grants":[],"datasets":[],"versions":["https://openalex.org/W4319303166"],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390524233","https://openalex.org/W4287027631","https://openalex.org/W4237171675","https://openalex.org/W3209723314","https://openalex.org/W3205398323","https://openalex.org/W3192357901","https://openalex.org/W3036286480","https://openalex.org/W2952736415","https://openalex.org/W2883297582","https://openalex.org/W2387360586"],"abstract_inverted_index":{"Single-frame":[0],"InfraRed":[1],"Small":[2],"Target":[3],"(SIRST)":[4],"detection":[5,214],"has":[6],"been":[7],"a":[8,13,22,36,135,142,201],"challenging":[9],"task":[10],"due":[11],"to":[12,39,54,61,129,177,187,229],"lack":[14],"of":[15,24,92,102,152,156,181,210],"inherent":[16],"characteristics,":[17],"imprecise":[18],"bounding":[19],"box":[20],"regression,":[21],"scarcity":[23],"real-world":[25],"datasets,":[26],"and":[27,84,166,183,190,222],"sensitive":[28],"localization":[29],"evaluation.":[30],"In":[31],"this":[32,68,234],"paper,":[33],"we":[34,43,70,105,140],"propose":[35,71],"comprehensive":[37],"solution":[38],"these":[40],"challenges.":[41],"First,":[42],"find":[44],"that":[45,78,200],"the":[46,80,86,90,93,99,107,115,122,131,153,161,167,179,194,208],"existing":[47],"anchor-free":[48],"label":[49,75],"assignment":[50,76,88],"method":[51],"is":[52],"prone":[53],"mislabeling":[55],"small":[56,148,212],"targets":[57],"as":[58,118],"background,":[59],"leading":[60],"their":[62],"omission":[63],"by":[64,98],"detectors.":[65],"To":[66],"overcome":[67],"issue,":[69],"an":[72],"all-scale":[73],"pseudo-box-based":[74],"scheme":[77],"relaxes":[79],"constraints":[81],"on":[82,193],"scale":[83],"decouples":[85],"spatial":[87],"from":[89],"size":[91],"ground-truth":[94],"target.":[95],"Second,":[96],"motivated":[97],"structured":[100],"prior":[101],"feature":[103],"pyramids,":[104],"introduce":[106],"one-stage":[108],"cascade":[109,136,203],"refinement":[110,124,204],"network":[111],"(OSCAR),":[112],"which":[113],"uses":[114],"high-level":[116],"head":[117],"soft":[119],"proposals":[120],"for":[121,146,170],"low-level":[123],"head.":[125],"This":[126],"allows":[127],"OSCAR":[128,182],"process":[130],"same":[132],"target":[133,149,213],"in":[134,233],"coarse-to-fine":[137],"manner.":[138],"Finally,":[139],"present":[141],"new":[143],"research":[144,232],"benchmark":[145],"infrared":[147,211],"detection,":[150],"consisting":[151],"SIRST-V2":[154,195],"dataset":[155],"real-world,":[157],"high-resolution":[158],"single-frame":[159],"targets,":[160],"normalized":[162],"contrast":[163],"evaluation":[164],"metric,":[165],"DeepInfrared":[168,219],"toolkit":[169],"detection.":[171],"We":[172],"conduct":[173],"extensive":[174],"ablation":[175],"studies":[176],"evaluate":[178],"components":[180],"compare":[184],"its":[185],"performance":[186],"state-of-the-art":[188],"model-driven":[189],"data-driven":[191],"methods":[192],"benchmark.":[196],"Our":[197],"results":[198],"demonstrate":[199],"top-down":[202],"framework":[205],"can":[206],"improve":[207],"accuracy":[209],"without":[215],"sacrificing":[216],"efficiency.":[217],"The":[218],"toolkit,":[220],"dataset,":[221],"trained":[223],"models":[224],"are":[225],"available":[226],"at":[227],"https://github.com/YimianDai/open-deepinfrared":[228],"advance":[230],"further":[231],"field.":[235]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4311994464","counts_by_year":[],"updated_date":"2025-03-07T17:33:35.154136","created_date":"2023-01-03"}