{"id":"https://openalex.org/W4311430453","doi":"https://doi.org/10.48550/arxiv.2212.05740","title":"Searching for Effective Multilingual Fine-Tuning Methods: A Case Study in Summarization","display_name":"Searching for Effective Multilingual Fine-Tuning Methods: A Case Study in Summarization","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4311430453","doi":"https://doi.org/10.48550/arxiv.2212.05740"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.05740","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.05740","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5050495216","display_name":"Yiwei Qin","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qin, Yiwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068811427","display_name":"Graham Neubig","orcid":"https://orcid.org/0000-0002-2072-3789"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Neubig, Graham","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100354997","display_name":"Pengfei Liu","orcid":"https://orcid.org/0000-0001-9030-1875"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Pengfei","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.609515,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":69},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/fine-tuning","display_name":"Fine-tuning","score":0.55469733}],"concepts":[{"id":"https://openalex.org/C170858558","wikidata":"https://www.wikidata.org/wiki/Q1394144","display_name":"Automatic summarization","level":2,"score":0.97611046},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8255296},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.6541518},{"id":"https://openalex.org/C157524613","wikidata":"https://www.wikidata.org/wiki/Q2828883","display_name":"Fine-tuning","level":2,"score":0.55469733},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.534958},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44990546},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.4235756},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.05740","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.05740","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.05740","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.85}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4309877123","https://openalex.org/W4287802662","https://openalex.org/W3154646238","https://openalex.org/W3037551068","https://openalex.org/W3023594376","https://openalex.org/W3023285645","https://openalex.org/W2899852118","https://openalex.org/W2366403280","https://openalex.org/W2091301346","https://openalex.org/W1495108544"],"abstract_inverted_index":{"Recently,":[0],"a":[1,73,83],"large":[2],"number":[3],"of":[4,27,38,47,50,56,85,98],"tuning":[5,29,52,100],"strategies":[6,30,53],"have":[7],"been":[8],"proposed":[9],"to":[10,15],"adapt":[11],"pre-trained":[12],"language":[13],"models":[14],"downstream":[16],"tasks.":[17],"In":[18],"this":[19],"paper,":[20],"we":[21,42,69],"perform":[22],"an":[23],"extensive":[24],"empirical":[25],"evaluation":[26],"various":[28],"for":[31,63,92],"multilingual":[32,51,99],"learning,":[33],"particularly":[34],"in":[35],"the":[36,44,77,96],"context":[37],"text":[39],"summarization.":[40],"Specifically,":[41],"explore":[43],"relative":[45],"advantages":[46],"three":[48],"families":[49],"(a":[54],"total":[55],"five":[57],"models)":[58],"and":[59],"empirically":[60],"evaluate":[61],"them":[62],"summarization":[64],"over":[65],"45":[66],"languages.":[67],"Experimentally,":[68],"not":[70],"only":[71],"established":[72],"new":[74],"state-of-the-art":[75],"on":[76,95],"XL-Sum":[78],"dataset":[79],"but":[80],"also":[81],"derive":[82],"series":[84],"observations":[86],"that":[87],"hopefully":[88],"can":[89],"provide":[90],"hints":[91],"future":[93],"research":[94],"design":[97],"strategies.":[101]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4311430453","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-03-18T08:29:01.071418","created_date":"2022-12-26"}