{"id":"https://openalex.org/W4311414976","doi":"https://doi.org/10.48550/arxiv.2212.05503","title":"Low-rank Tensor Assisted K-space Generative Model for Parallel Imaging Reconstruction","display_name":"Low-rank Tensor Assisted K-space Generative Model for Parallel Imaging Reconstruction","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4311414976","doi":"https://doi.org/10.48550/arxiv.2212.05503"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.05503","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.05503","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100441570","display_name":"Wei Zhang","orcid":"https://orcid.org/0000-0002-1533-6979"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Wei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050226600","display_name":"Zengwei Xiao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xiao, Zengwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037827527","display_name":"Hui Tao","orcid":"https://orcid.org/0000-0002-9139-7693"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tao, Hui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100419543","display_name":"Minghui Zhang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Minghui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101182961","display_name":"Xiaoling Xu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Xiaoling","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5057647276","display_name":"Qiegen Liu","orcid":"https://orcid.org/0000-0003-4717-2283"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Qiegen","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13650","display_name":"Computational Physics and Python Applications","score":0.9911,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13650","display_name":"Computational Physics and Python Applications","score":0.9911,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9825,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.6849252},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.6134247},{"id":"https://openalex.org/keywords/tensor-decomposition","display_name":"Tensor Decomposition","score":0.525215},{"id":"https://openalex.org/keywords/nonnegative-tensor-factorization","display_name":"Nonnegative Tensor Factorization","score":0.518692},{"id":"https://openalex.org/keywords/higher-order-tensors","display_name":"Higher-Order Tensors","score":0.511505},{"id":"https://openalex.org/keywords/parallel-factor-analysis","display_name":"Parallel Factor Analysis","score":0.505123},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.44356346}],"concepts":[{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.7832364},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.6849252},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.6134247},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.52765596},{"id":"https://openalex.org/C57493831","wikidata":"https://www.wikidata.org/wiki/Q3134666","display_name":"Projection (relational algebra)","level":2,"score":0.51246625},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.5062236},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.44356346},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.43227404},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42325944},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.39959908},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35348573},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.20058522},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.08671111},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.05503","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.05503","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.05503","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4365211920","https://openalex.org/W4290987221","https://openalex.org/W3014948380","https://openalex.org/W2950186459","https://openalex.org/W2897298721","https://openalex.org/W2569661359","https://openalex.org/W2242624680","https://openalex.org/W2216309014","https://openalex.org/W2170114491","https://openalex.org/W2136127937"],"abstract_inverted_index":{"Although":[0],"recent":[1],"deep":[2],"learning":[3],"methods,":[4],"especially":[5],"generative":[6,33,56,119,126],"models,":[7],"have":[8,35],"shown":[9],"good":[10],"performance":[11],"in":[12,24,31],"fast":[13],"magnetic":[14],"resonance":[15],"imaging,":[16],"there":[17],"is":[18,82,92,108],"still":[19],"much":[20],"room":[21],"for":[22,59,75,97,133],"improvement":[23],"high-dimensional":[25,72,130],"generation.":[26],"Considering":[27],"that":[28,65,141],"internal":[29],"dimensions":[30],"score-based":[32],"models":[34],"a":[36,49,85],"critical":[37],"impact":[38],"on":[39,114],"estimating":[40],"the":[41,44,79,90,101,104,118,138,142],"gradient":[42],"of":[43,117],"data":[45,81],"distribution,":[46],"we":[47,66,122],"present":[48],"new":[50],"idea,":[51],"low-rank":[52,105,112,129],"tensor":[53,96,115,131],"assisted":[54],"k-space":[55],"model":[57],"(LR-KGM),":[58],"parallel":[60],"imaging":[61],"reconstruction.":[62,134],"This":[63],"means":[64],"transform":[67],"original":[68],"prior":[69,73,98],"information":[70,74],"into":[71,84,95],"learning.":[76,99],"More":[77],"specifically,":[78],"multi-channel":[80],"constructed":[83],"large":[86],"Hankel":[87],"matrix":[88,91],"and":[89,128],"subsequently":[93],"folded":[94],"In":[100],"testing":[102],"phase,":[103],"rotation":[106],"strategy":[107],"utilized":[109],"to":[110],"impose":[111],"constraints":[113],"output":[116],"network.":[120],"Furthermore,":[121],"alternately":[123],"use":[124],"traditional":[125],"iterations":[127,132],"Experimental":[135],"comparisons":[136],"with":[137],"state-of-the-arts":[139],"demonstrated":[140],"proposed":[143],"LR-KGM":[144],"method":[145],"achieved":[146],"better":[147],"performance.":[148]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4311414976","counts_by_year":[],"updated_date":"2024-12-05T09:01:55.396084","created_date":"2022-12-26"}