{"id":"https://openalex.org/W4311001165","doi":"https://doi.org/10.48550/arxiv.2212.04365","title":"Alleviating neighbor bias: augmenting graph self-supervise learning with structural equivalent positive samples","display_name":"Alleviating neighbor bias: augmenting graph self-supervise learning with structural equivalent positive samples","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4311001165","doi":"https://doi.org/10.48550/arxiv.2212.04365"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.04365","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2212.04365","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110948574","display_name":"Zhu Jiawei","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Jiawei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100527537","display_name":"Hong Mei","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hong, Mei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100742786","display_name":"Ronghua Du","orcid":"https://orcid.org/0000-0003-1081-5572"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Du, Ronghua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100398353","display_name":"Haifeng Li","orcid":"https://orcid.org/0000-0003-1173-6593"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Haifeng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.865382,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12536","display_name":"Topological and Geometric Data Analysis","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.56800866},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5648199},{"id":"https://openalex.org/C2780069185","wikidata":"https://www.wikidata.org/wiki/Q7977945","display_name":"Equivalence (formal languages)","level":2,"score":0.5469721},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.49702385},{"id":"https://openalex.org/C62611344","wikidata":"https://www.wikidata.org/wiki/Q1062658","display_name":"Node (physics)","level":2,"score":0.45178565},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.4157022},{"id":"https://openalex.org/C184720557","wikidata":"https://www.wikidata.org/wiki/Q7825049","display_name":"Topology (electrical circuits)","level":2,"score":0.3871754},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34968346},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.339194},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3256209},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.16069815},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.12521163},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.04365","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2212.04365","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2212.04365","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W43109613","https://openalex.org/W3162204513","https://openalex.org/W3083152911","https://openalex.org/W3022347918","https://openalex.org/W2371138613","https://openalex.org/W2359952343","https://openalex.org/W2239445980","https://openalex.org/W2120455979","https://openalex.org/W2080152487","https://openalex.org/W2048963458"],"abstract_inverted_index":{"In":[0,102,171],"recent":[1],"years,":[2],"using":[3,154,243],"a":[4,18,86,134,141,175,244],"self-supervised":[5,28,137],"learning":[6,29],"framework":[7],"to":[8,52,57,179,193,204,214],"learn":[9],"the":[10,80,97,108,127,160,190,200,206,212,224,236],"general":[11],"characteristics":[12],"of":[13,27,100,111,163,208,246],"graphs":[14],"has":[15],"been":[16],"considered":[17],"promising":[19],"paradigm":[20],"for":[21,31],"graph":[22,32,81,230],"representation":[23,191],"learning.":[24],"The":[25,232],"core":[26],"strategies":[30],"neural":[33],"networks":[34],"lies":[35],"in":[36,181,189],"constructing":[37],"suitable":[38],"positive":[39,62,70,73],"sample":[40],"selection":[41],"strategies.":[42],"However,":[43],"existing":[44],"GNNs":[45,112],"typically":[46],"aggregate":[47],"information":[48],"from":[49],"neighboring":[50,61],"nodes":[51],"update":[53],"node":[54,164,183,225],"representations,":[55],"leading":[56],"an":[58],"over-reliance":[59],"on":[60,79,167,211,223],"samples,":[63,71,85,123],"i.e.,":[64,72],"homophilous":[65],"samples;":[66],"while":[67],"ignoring":[68],"long-range":[69],"samples":[74,119],"that":[75,107,235],"are":[76],"far":[77],"apart":[78],"but":[82],"structurally":[83,121],"equivalent":[84,122],"problem":[87],"we":[88,105,125,132,149,158,173,198],"call":[89,126],"\"neighbor":[90],"bias.\"":[91],"This":[92],"neighbor":[93,195],"bias":[94],"can":[95,239],"reduce":[96],"generalization":[98,109],"performance":[99,238],"GNNs.":[101],"this":[103],"paper,":[104],"argue":[106],"properties":[110],"should":[113],"be":[114,240],"determined":[115],"by":[116],"combining":[117],"homogeneous":[118],"and":[120],"which":[124],"\"GC":[128],"combination":[129],"hypothesis.\"":[130],"Therefore,":[131],"propose":[133],"topological":[135,142,152,169,176,247],"signal-driven":[136],"method.":[138],"It":[139],"uses":[140],"information-guided":[143],"structural":[144,161,187,209],"equivalence":[145,162,188,210],"sampling":[146],"strategy.":[147],"First,":[148],"extract":[150],"multiscale":[151],"features":[153],"persistent":[155],"homology.":[156],"Then":[157],"compute":[159],"pairs":[165,184],"based":[166],"their":[168],"features.":[170],"particular,":[172],"design":[174],"loss":[177],"function":[178],"pull":[180],"non-neighboring":[182],"with":[185,217],"high":[186],"space":[192],"alleviate":[194],"bias.":[196],"Finally,":[197],"use":[199],"joint":[201],"training":[202],"mechanism":[203],"adjust":[205],"effect":[207],"model":[213,237],"fit":[215],"datasets":[216],"different":[218],"characteristics.":[219],"We":[220],"conducted":[221],"experiments":[222],"classification":[226],"task":[227],"across":[228],"seven":[229],"datasets.":[231],"results":[233],"show":[234],"effectively":[241],"improved":[242],"strategy":[245],"signal":[248],"enhancement.":[249]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4311001165","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3}],"updated_date":"2025-01-04T18:22:35.054096","created_date":"2022-12-22"}